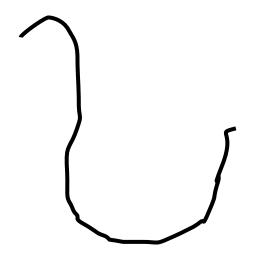
Building Recognizers for Digital Ink and Gestures

Digital Ink

- Natural medium for pen-based computing
 - Pen inputs strokes
 - Strokes recorded as lists of X,Y coordinates
 - E.g., in Java:
 - Point[] aStroke;
- Can be used as *data* -- handwritten content
- ... or as commands -- gestures to be processed

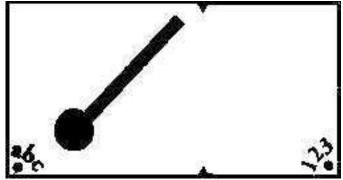


Distinguishing Content from Commands

- Depends on the set of input devices, but
 - generally modal
 - Meaning that you're either in content mode or you're in command mode
- Often a button or other model selector to indicate command mode
 - Example: Wacom tablet pen has a mode button on the barrel
 - Temporary switch--only changes mode while held down, rather than a toggle.

Other Options

- Use a special character that disambiguates from content input and command input
 - E.g., graffiti on PalmOS
 - "Command stroke" says that what comes after is meant to be interpreted as a command.



- Can also have special "alphabet" of symbols that are unique to commands
- Can also use another interactor (e.g., the keyboard)
 - but requires that you put down the pen to enter commands

Still More Options

- "Contextually aware" commands
- Interpretation of whether something is a command or not depends on where it is drawn
 - E.g., Igarashi's Pegasus drawing beautification program
 - a scribble in free space is content
 - a scribble that multi-crosses another line is interpreted as an erase gesture

"Sketch-based" user interfaces

- User interfaces aimed at creating, refining, and reusing hand-drawn input
- Typically:
 - Few "normal" GUI controls
 - Strokes contextually interpreted, and intermingled with content
- Examples:
 - Drawing beautification (Igarashi: Pegasus)
 - UI creation (Landay: SILK)
 - Turn UML, diagrams, etc., into machine representations (Saund)
 - 3D modeling (lgarashi:Teddy)

Why Use Ink as Commands?

- Avoids having to use another interactor as the "command interactor"
 - Example: don't want to have to put down the pen and pick up the keyboard
- What's the challenge this with, though?
 - The command gestures *have* to be interpreted by the system
 - Needs to be reliable, or undoable/correctable
 - In contrast to content:
 - For some applications, uninterpreted content ink may be just fine

Content Recognizers

- Feature-based recognizers:
- Canonical example: Dean Rubine, *The Automatic Recognition of Gestures*, Ph.D. dissertation, CMU 1990.
 - "Feature based" recognizer, computes range of metrics such as length, distance between first and last points, cosine of initial angle, etc
 - Compute a *feature vector* that describes the stroke
 - Compare to feature vector derived from training data to determine match (multidimensional distance function)
 - To work well, requires that values of each feature should be normally distributed within a gesture, and between gestures the values of each feature should vary greatly

9

Content Recognizers [2]

- "Unistrokes" (a la PalmOS Graffiti)
- Use a custom alphabet with high-disambiguation potential
- Decompose entered strokes into constituent strokes and compare against template
 - E.g., unistrokes uses 5 different strokes written in four different orientations (0, 45, 90, and 135 degrees)
- Little customizability, but good recognition results and high data entry speed
- Canonical reference:
 - D. Goldberg and C. Richardson, *Touch-Typing* with a Stylus. Proceedings of CHI 1993.

Georgia

Tech

Content Recognizers [3]

- Waaaaay more complex types of recognizers that are out of the scope of this class
 - E.g., neural net-based, etc.

This Lecture

- Focus on recognition techniques suitable for **command gestures**
- While we can build these using the same techniques used for content ink, we can also get away with some significantly easier methods
 - Read: "hacks", but also just very clever algorithms
- Building general-purpose recognizers suitable for large alphabets (such as arbitrary text) is outside the scope of this class
- We'll look at a few simple recognizers:
 - 9-square
 - Siger
 - I\$

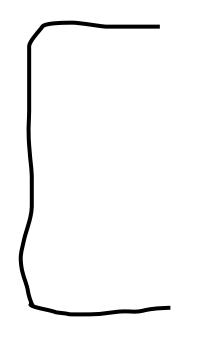
9-square

- Useful for recognizing "Tivoli-like" commands
- Developed at Xerox PARC for use on the Liveboard system
 - Liveboard [1992]: 4 foot X 3 foot display wall with pen input
- Used in "real life" meetings over a period of several years, supported digital ink and natural ink gestures

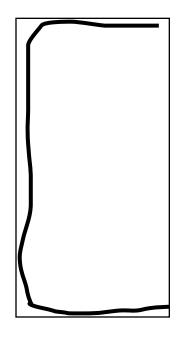
"9 Square" recognizer

- Basic version of algorithm:
 - I. Take any stroke
 - 2. Compute its bounding box
 - 3. Divide the bounding box into a 9-square tic-tac-toe grid
 - 4. Mark which squares the stroke passes through
 - 5. Compare this with a template

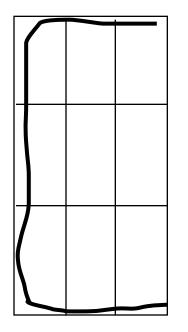
I. Original Stroke



2. Compute Bounding Box



3. Divide Bounding Box into 9 Squares (3x3 grid)



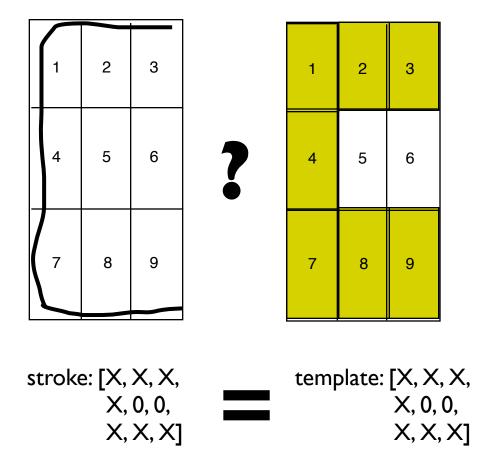
4. Mark Squares Through Which the Stroke Passes

1	2	3
4	5	6
7	8	9

representation: [X, X, X, X, 0, 0, X, X, X]

Georgia Tech

5. Compare with Template



Implementing 9-square

- Create set of templates that represent the intersection squares for the gestures you want to recognize
- Bound the gesture, 9-square it, and create a vector of intersection squares
- Compare the vector with each template vector to see if a match occurs

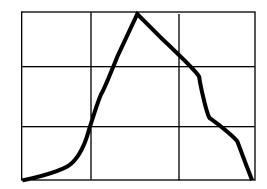
Gotchas [1]

- What about long, narrow gestures (like a vertical line?)
- Unpredictable slicing
 - A perfectly straight vertical line has a width of I, impossible to subdivide
 - More likely, a narrow but slightly uneven line will cross into and out of the left and right columns
- Solution: pad the bounding box before subdividing
 - Can just pad by a fixed amount, or
 - Pad separately in each dimension
 - Long vertical shapes may need more padding in the horizontal dimension
 - Long horizontal shapes may need more padding in the vertical dimension
 - Compute a pad factor for each dimension based on the other

Gotchas [2]

- Hard to do some useful shapes, e.g., vertical caret
- Is the correct template

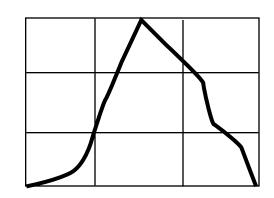
 [0, X, 0,
 [0, X, 0,
 [0, X, 0,
 X, 0, X,
 X, 0, X]
- ... or other similar templates?
- Inherent ambiguity in matching the symbol as it is likely to be drawn to the 9-square template
- Any good solutions?

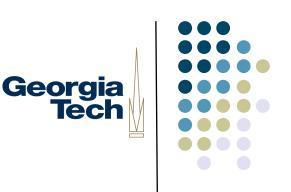


Gotchas [2]

- Hard to do some useful shapes, e.g., vertical caret
- Is the correct template

 [0, X, 0,
 [0, X, 0,
 [0, X, 0,
 X, X, X, X,
 X, 0, X]
- ... or other, similar templates?
- Inherent ambiguity in matching the symbol as it is likely to be drawn to the 9-square template
- Any good solutions?
- Represent that ambiguity
- Introduce a "don't care" symbol into the template



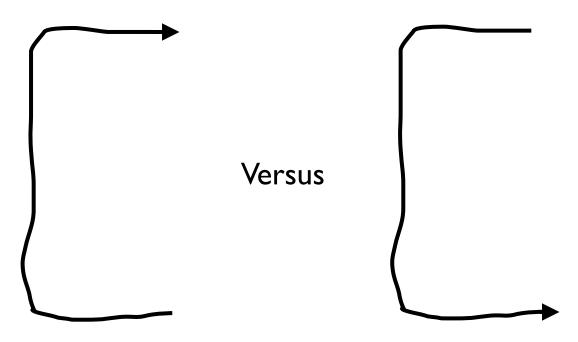


Don't Cares

- Use 0 to represent no intersection
- Use X to represent intersection
- Use * to represent don't cares
- Example: [0, X, 0, *, *, *, *, or... [0, X, 0, *, X, *, or... *, X, *, X, 0, X]
- Now need custom matching process (simple equivalence testing is not "smart enough")
- if stroke[i] == template[i] || template[i] == "*"

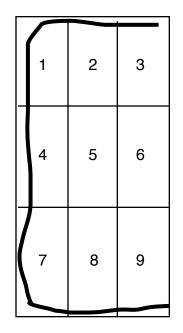
An Enhancement

- What if we want direction to matter?
- Example:

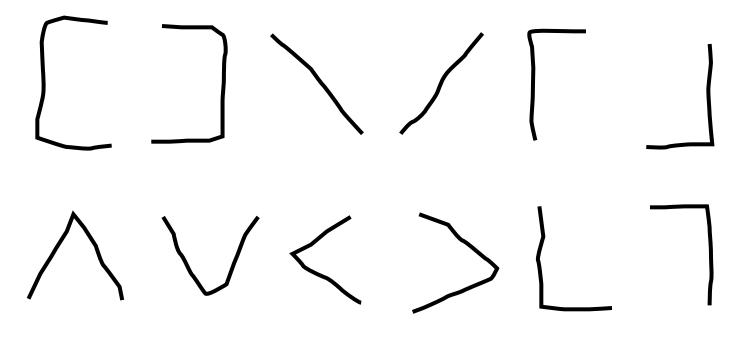


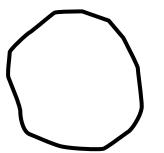
Directional Nine-Squares

- Use an alternative stroke/template representation that preserves ordering across the subsquares
- Example:
 - top-to-bottom: {3, 2, 1, 4, 7, 8, 9}
 - bottom-to-top: {9, 8, 7, 4, 1, 2, 3}
- Can be extended to don't cares also
- (Treat don't cares as wild cards in the matching process)



Sample 9-square Gestures





... with directional variants of each

Another Simple Recognizer

- 9-square is great at recognizing a small set of regular gestures
- ... but other potentially useful gestures are more difficult
 - Example: "pigtail" gesture common in proofreaders' marks

- Do we need to go to a more complicated "real" recognizer in order to process these?
- No!

The SiGeR Recognizer

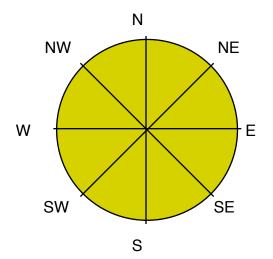
- SiGeR: Simple Gesture Recognizer
- Developed by Microsoft Research as a way for users to create custom gestures for Tablet PCs
- Resources:
 - http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ dntablet/html/tbconCuGesRec.asp
 - http://sourceforge.net/projects/siger/ (C# implementation)
- Big idea:
 - What if you could turn gesture recognition problem into a regular expression pattern matching problem?
 - Reuse existing regexp machinery and turn it into a gesture recognizer!

Basic Algorithm

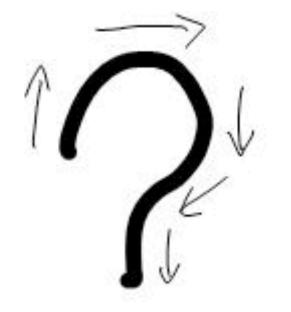
- I. Processes successive points in the stroke
- 2. Compute a direction for each stroke relative to the previous one, and output a vector of symbols representing the directions
- 3. Define a pattern string that represents the basic shape of the gesture you want to match against
- 4. Compare the direction vector to the pattern expression; can even use standard regular expression matching

Only One Tricky Part...

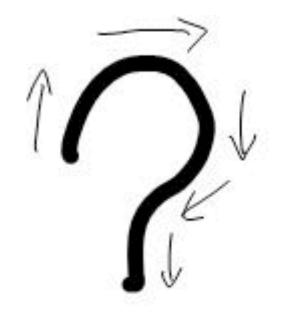
- Getting the representations right to make our job easier when it comes time to match.
- We'll use 8 ordinal directions representing compass points



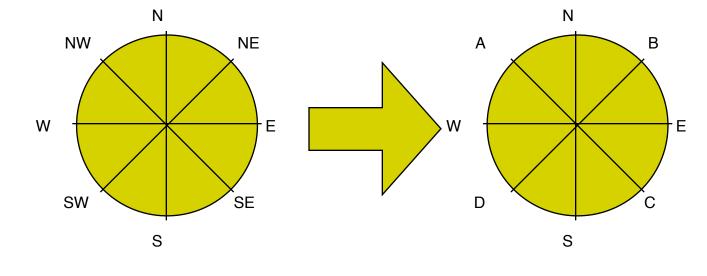
I. Process Successive Points in the Stroke



2. Compute a direction vector based on each point



2.a. To make our job easier, Georgia rename the directions so we can put them in one big string

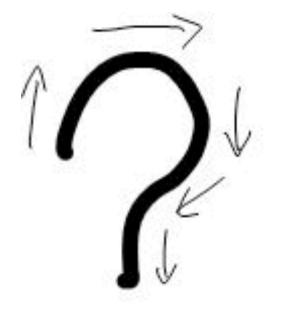




Tech

N, N, N, NE, NE, E, E, E, SE, SE, S, S, S, SVV, SVV, SVV, SVV, VV, S, S, S, S, S

3. Define a pattern string that represents the overall shape of the gesture



NNNBBEEECCSSSDDDDDSSSSS

Question mark is:

- •generally up
- •then generally right
- •then generally down
- •then generally toward the lower left
- •then generally down

(defines basic shape of the stroke)

3.a. How to define the template?

Reuse the ordinal direction symbols N, S, E, W, A, B, C, D

Plus symbols representing more general directions NORTHISH = N, NE, NW (N, A, B) EASTISH = E, NE, SE (E, B, C) SOUTHEASTISH = SE, E, S (C, E, S) ...and so forth...

Template = [NORTHISH, EASTISH, SOUTHISH, SOUTHWESTISH, SOUTHISH] (defines basic shape of the stroke)

Defining the Template

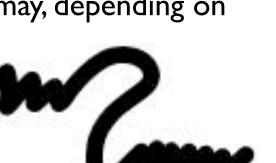
- Allows you to specify template at greater or lesser specificity
 - Use ordinal symbols when you want a precise match
 - General symbols when you want more "slack"
- The template is then matched against the direction vector by seeing if the template patterns occur

4. How to Match?

- Turn the template vector into a regexp
- See if the pattern is matched in the direction string
- Example:
 - template = [NORTHISH, EASTISH, SOUTHISH, SOUTHWESTISH, SOUTHISH]
 - regexp = "[NAB]+[BEC]+[DSC]+[WDS]+[DSC]+"
 - Pattern qm = Pattern.compile(regexp)
 - if (qm.matcher(directionVector).find()) {
 - // it matches!
 - }

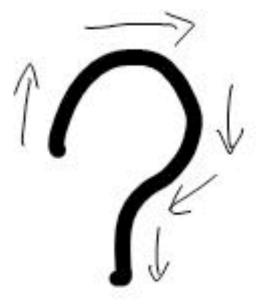
How Robust is This?

- Here's a gesture that shouldn't match but may, depending on implementation
- Why?
 - A question mark appears in the middle of the stroke
- Therefore:
 - Important to match the **whole** stroke, not just **part** of it!
 - Think of the pattern as including ^ and \$ (regular expression markers for beginning of line and end of line) at the first and end



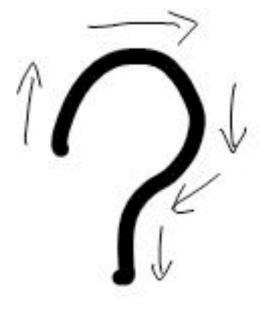
How Robust is This?

- But requiring the **entire** stroke to match the pattern introduces a new problem
- Can you tell what it is?



How Robust is This?

- But requiring the entire stroke to match the pattern introduces a new problem
- Can you tell what it is?
- Look closely at the question mark
 - At the bottom, the stroke jags off to the left
 - Common for the pen to make little tick marks like this when it comes into contact with the tablet, or leaves it



Solution

- Simply trim the beginning and end points of the vector!
- More generally:
 - Ignore small outlier points if the overall shape otherwise conforms to the shape pattern specified in the template.

Implementing SiGeR

Create a function that takes a template and emits a regexp pattern that will be used to match it. Example:

```
buf.append("^");
                          // match the start of input
buf.append(``.{0,2}+'');
                        // consume any character 0-2 times (this gets rid of the noise at the beginning)
for (int i=0; i<pattern.length; i++) {</pre>
  switch (pattern[i]) {
                          // emit a unique letter code for each of the 8 directions
     case NORTH: buf.append("N+"); break;
     case SOUTH: buf.append("S+"); break;
     case EAST: buf.append("E+"); break;
     case WEST: buf.append("W+"); break;
     case NORTHEAST: buf.append("B+"); break;
     // ...
     case NORTHISH: buf.append("[ANB]+"); break; // combination directions combine letters
     case SOUTHISH: buf.append("[DSC]+"); break; // combination directions combine letters
     // ...
buf.append(".{0,2}+);
buf.append("$");
```


Implementing SiGeR (Cont'd)

- Write a function buildDirectionVector() that takes an input stroke and returns a direction vector
 - Compare each point to the point previous to it
 - Emit a symbol to represent whether the movement is UP, RIGHT, etc.
 - (using all of the 8 ordinal directions)
- Use the Java regular expression library to match strokes to patterns! import java.util.regex.*;
 - if (questionMarkPattern.matcher(strokeString).find()) {
 - // it's a question mark!
 - }

More on SiGeR

- SiGeR actually does much more than this; we're just implementing the most basic parts of it here.
- Example: collects statistical information about strokes that can be used to disambiguate them
 - Percentage of the stroke moving right, distance between the start and end points, etc.
 - Can help disambiguate a ring from a square
- Also computes various other features
 - Are shapes open or shut, pen velocity, etc.
 - Can tweak patterns by requiring certain features

The I\$ Recognizer

- Main idea:
 - What if we could just pairwise compare the points in our candidate stroke with the points in a template?
 - If they're the same (or close) we call it a match
- I\$ runs with this idea
- Body of the algorithm is in fixing the obvious flaws

The I\$ Recognizer

- Designed to be a simple yet "real" recognizer for UI work
- Doesn't require complex math, easy to implement in a few lines of code
- Can be made invariant to gesture scale, rotation, and input sampling speed
- Returns an N-best list, with scores for confidence of recognition of certain gestures

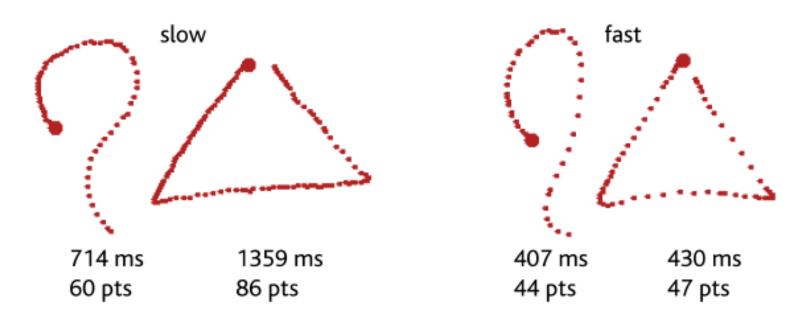
 Overall inputs and outputs: given a preexisting set of *Templates* (labeled T₀, T₁, ..., T_n) and an input stroke consisting of a set of *Candidate Points* (labeled C), determine which *Template* most closely matches

Basic I\$ Algorithm

- I. Resample the point path
- 2. Rotate once based on the "indicative angle"
- 3. Scale and translate
- 4. Find the optimal angle for the best score

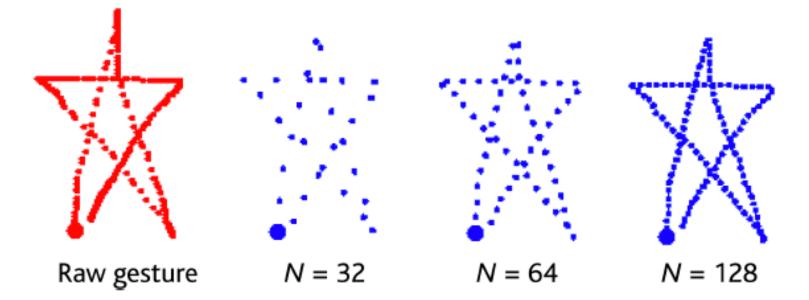
I. Resample the point path

- Problem:
 - Candidate points are made by the user via a particular input device, such as a pen
 - The user may vary the speed at which she makes the gesture
 - The hardware and software may sample at different rates depending on h/w speed, overall load, etc.



I. Resample the point path

- Solution: resample gestures such that the path defined by their original M points is defined by N equidistantly spaced points.
 - N too low means loss of precision; N too high adds time to comparisons
 - Good rule-of-thumb: N=64



I. Resample the point path

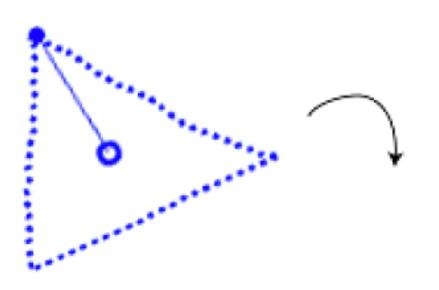
- Calculate the total length of the M-point path
- Divide this length by n-1 to get the length of each increment I between N new points
- Step through path such that when the distance covered exceeds *I*, a new points is added through linear interpolation
- After completion of this step, the candidate gesture and any templates will all have exactly N points
- This will allow us to measure the distance from C[k] to T_i[i] for k=1 to N

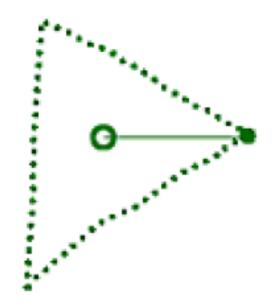
2. Rotate once based on the "Indicative Angle"

- Problem:
 - What if the candidate stroke is rotated slightly from the template?
 - All points will be off.
 - Need to figure out how to best align one to the other so that we can test their closeness
- Possible solution?
 - Brute force it: rotate candidate gesture +1 degree at a time, for 360 degrees, and take the best match.
 - But this is expensive. Can we do better?

2. Rotate once based on the "Indicative Angle"

- Faster solution:
 - Find the gesture's indicative angle
 - This is the angle formed by the centroid of the gesture and the gesture's first point
 - Then, rotate the gesture so that this angle is at 0 degrees.





Georgia Tech

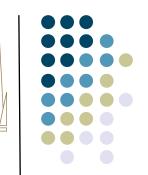
3. Scale and translate

- Problem:
 - What if the input gesture is drawn at a different size than the template gesture?
 - Won't match—points will be way off
- Solution:
 - Scale the gesture to a reference square
 - Then, translate it so that the entire scaled gesture starts at a known reference point
 - Translate the gesture so that its centroid is at the origin point, (0,0)

When do these steps run?

- Steps I-3 are run on the templates once, as they are first read in (at application startup time)
- Then, steps I-3 are run on each candidate stroke as it is made
 - This gets it resampled, rotated, scaled, and translated so that it is comparable to the templates
- Finally, after each time a candidate stroke is made, and steps 1-3 are applied, we run step 4 which actually does the recognition

4: Find the optimal angle for the Georgia best score



- Finally, we compare a candidate C with each stored template T_i to find the average distance d_i between corresponding points.
 - This indicates how close a match the candidate is with a given template
 - Lower distance == closer match
- How do we compute d_i ?

$$d_{i} = \frac{\sum_{k=1}^{N} \sqrt{(C[k]_{x} - T_{i}[k]_{x})^{2} + (C[k]_{y} - T_{i}[k]_{y})^{2}}}{N}$$

 The template with the lowest path-distance to C is the algorithm's best guess at a match.

4: Find the optimal angle for the

best score

- Only one more step!
- Ideally, we'd like a "best N-list" of most likely matches. If we have "low confidence" in a gesture
 - That is, a gesture is very close to two templates, or not very close to any
- We may want to present this as a pick-list or other interaction technique to resolve the ambiguity
- Convert to a normalize [0...1] score using:

$$score = 1 - \frac{d_i^*}{\frac{1}{2}\sqrt{size^2 + size^2}}$$

- size is the length of a side of the reference square
- (paper discusses one more step, called Golden Section Search, which improves accuracy... but it's optional, as 1\$ does well without it)

Limitations of the I\$ Recognizer

- IR is rotation, scale, and position invariant. While this provides tolerance to gesture variation, it has some downsides:
 - Can't distinguish gestures whose identities depend on specific orientations...
 - ... aspect ratios...
 - ... or locations
- Eg, can't separate:
 - Squares from rectangles
 - Circles from ovals
 - Up-arrows from down-arrows
- The uniform scaling (step 3) also means that shapes such as vertical and horizontal lines don't do well in 1\$

Still...

- Extremely good accuracy. Often ~99% as implemented in the paper, with real-world gestures made by real-world people
- Extremely high performance. Faster than most other common "real" recognizers
- Nice features, such as returning N-best list scores