
Solving Linear Arithmetic Constraints
for User Interface Applications

Alan Borning and Kim Marriott
Department of Computer Science

Monash University
Clayton, Victoria 3168, AUSTRALIA
borning,marriott @cs.monash.edu.au

Peter Stuckey and Yi Xiao
Department of Computer Science;

Department of Mathematics & Statistics
University of Melbourne

Parkville, Victoria 3052, AUSTRALIA
pjs@cs.mu.oz.au; yxiao@maths.mu.oz.au

ABSTRACT
Linear equality and inequality constraints arise naturally in
specifying many aspects of user interfaces, such as requiring
that onewindowbe to the left of another, requiring that a pane
occupy the leftmost 1/3 of a window, or preferring that an ob-
ject be contained within a rectangle if possible. Current con-
straint solvers designed for UI applications cannot efficiently
handle simultaneous linear equations and inequalities. This is
amajor limitation. We describe incremental algorithms based
on the dual simplex and active set methods that can solve such
systems of constraints efficiently.

KEYWORDS: Linear constraints, inequality constraints,
simplex algorithm

1 INTRODUCTION
Linear equality and inequality constraints arise naturally in
specifying many aspects of user interfaces, in particular lay-
out and other geometric relations. Inequality constraints, in
particular, are needed to express relationships such as “in-
side,” “above,” “below,” “left-of,” “right-of,” and “over-
laps.” For example, if we are designing a Web document we
can express the requirement that figure1 be to the left of fig-
ure2 as the constraint figure1.rightSide figure2.leftSide.

It is important to be able to express preferences as well as re-
quirements in a constraint system. One use is to express a
desire for stability when moving parts of an image: things
should stay where they were unless there is some reason for
them to move. A second use is to process potentially invalid
user inputs in a graceful way. For example, if the user tries to
move a figure outside of its boundingwindow, it is reasonable
for the figure just to bump up against the side of the window
and stop, rather than giving an error. A third use is to balance
conflicting desires, for example in laying out a graph.

Permanent address: Department of Computer Science & Engineering,
University of Washington, Box 352350, Seattle, WA 98195, USA

Efficient techniques are available for solving such constraints
if the constraint network is acyclic. However, in trying to ap-
ply constraint solvers to real-world problems, we found that
the collection of constraints was in fact often cyclic. This
sometimes arose when the programmer added redundant con-
straints — the cycles could have been avoided by careful
analysis. However, this is an added burden on the program-
mer. Further, it is clearly contrary to the spirit of the whole
enterprise to require programmers to be constantly on guard
to avoid cycles and redundant constraints; after all, one of
the goals in providing constraints is to allow programmers to
state what relations they want to hold in a declarative fashion,
leaving it to the underlying system to enforce these relations.
For other applications, such as complex layout problemswith
conflicting goals, cycles seem unavoidable.

1.1 Constraint Hierarchies and Comparators
Since we want to be able to express preferences as well as
requirements in the constraint system, we need a specifica-
tion for how conflicting preferences are to be traded off. Con-
straint hierarchies [4] provide a general theory for this. In a
constraint hierarchy each constraint has a strength. The re-
quired strength is special, in that required constraints must
be satisfied. The other strengths all label non-required con-
straints. A constraint of a given strength completely domi-
nates any constraint with a weaker strength. In the theory, a
comparator is used to compare different possible solutions to
the constraints and select among them.

As described in [2], it is important to use a metric rather than
a predicate comparator for inequality constraints. Thus, plau-
sible comparators for use with linear equality and inequal-
ity constraints are locally-error-better, weighted-sum-better,
and least-squares-better. The least-squares-better compara-
tor strongly penalizes outlying values when trading off con-
straints of the same strength. It is particularly suited to tasks
such as laying out a tree, a graph, or a collection of win-
dows, where there are inherently conflicting preferences (for
example, that all the nodes in the depiction of a graph have
someminimum spacing and that edge lengths be minimized).
Locally-error-better, on the other hand, is a more permissive
comparator, in that it admits more solutions to the constraints.
(In fact any least-squares-better or weighted-sum-better so-
lution is also a locally-error-better solution [4].) It is thus
easier to implement algorithms to find a locally-error-better

1

solution, and in particular to design hybrid algorithms that
include subsolvers for simultaneous equations and inequali-
ties and also subsolvers for nonnumeric constraints [3]. Since
each of these different comparators is preferable in certain sit-
uations we give algorithms for each.

1.2 Adapting the Simplex Algorithm
Linear programming is concerned with solving the follow-
ing problem. Consider a collection of real-valued vari-
ables , each of which is constrained to be non-
negative: for . There are linear
equality or inequality constraints over the , each of the form

,
, or
.

Given these constraints, we wish to find values for the that
minimizes (or maximizes) the value of the objective function

.
This problem has been heavily studied for the past 50 years.
The most commonly used algorithm for solving it is the sim-
plex algorithm, developed by Dantzig in the 1940s, and there
are now numerous variations of it. Unfortunately, however,
existing implementations of the simplex are not really suit-
able for UI applications.

The principal issue is incrementality. In UI applications, we
need to solve similar problems repeatedly, rather than solv-
ing a single problemonce, and to achieve interactive response
times, very fast incremental algorithms are needed. There are
two cases. First, when moving an object with a mouse or
other input device, we typically represent this interaction as
a one-way constraint relating the mouse position to the de-
sired and coordinates of a part of the figure. For this case
we must resatisfy the same collection of constraints, differ-
ing only in the mouse location, each time the screen is re-
freshed. Second, when editing an object we may add or re-
move constraints and other parts, and we would like to make
these operations fast, by reusing as much of the previous so-
lution as possible. The performance requirements are consid-
erably more stringent for the first case than the second.

Another issue is defining a suitable objective function. The
objective function in the standard simplex algorithm must
be a linear expression; but the objective functions for the
locally-error-better, weighted-sum-better, and least-squares-
better comparators are all non-linear. Fortunately techniques
have been developed in the operations research community
for handling these cases, which we adopt here. For the first
two comparators, the objective functions are “almost linear,”
while the third comparator gives rise to a quadratic optimiza-
tion problem.

Finally, a third issue is accommodating variables that may
take on both positive and negative values, which in general is
the case in UI applications. (The standard simplex algorithm
requires all variables to be non-negative.) Here we adopt effi-
cient techniques developed for implementing constraint logic
programming languages.

1.3 Overview
We present algorithms for incrementally solving linear equal-
ity and inequality constraints for the three different compara-

tors described above. In Section 2.1 we give algorithms for
incrementally adding and deleting required constraints with
restricted and unrestricted variables from a system of con-
straints kept in augmented simplex form, a type of solved
form. In Section 3.1 we give an algorithm, Cassowary, based
on the dual simplex, for incrementally solving hierarchies
of constraints using the locally-error-better or weighted-sum-
better comparators when a constraint is added or an object
is moved, while in Section 4 we give an algorithm, QOCA,
based on the active set method, for incrementally solving hi-
erarchies of constraints using the least-squares-better com-
parator.

Both of our algorithms have been implemented, Cassowary
in Smalltalk and QOCA in C++. They perform surprisingly
well, and a summary of our results is given in Section 5. The
QOCA implementation is considerably more sophisticated
and has much better performance than the current version of
Cassowary. However, QOCA is inherently a more complex
algorithm, and re-implementing it with a comparable level
of performance would be a daunting task. In contrast, Cas-
sowary is straightforward, and a reimplementation based on
this paper is more reasonable, given a knowledge of the sim-
plex algorithm. A companion technical report [6] gives addi-
tional details for both algorithms.

1.4 Related Work

There is a long history of using constraints in user interfaces
and interactive systems, beginningwith Ivan Sutherland’s pi-
oneering Sketchpad system [20]. Most of the current sys-
tems use one-way constraints (e.g. [13, 17]), or local prop-
agation algorithms for acyclic collections of multi-way con-
straints (e.g. [19, 21]). Indigo [2] handles acyclic collections
of inequality constraints, but not cycles (simultaneous equa-
tions and inequalities). UI systems that handle simultaneous
linear equations include DETAIL [12] and Ultraviolet [3]. A
number of researchers (including the first author) have exper-
imented with a straightforward use of a simplex package in
a UI constraint solver, but the speed was not satisfactory for
interactive use. An earlier version of QOCA is described in
references [10] and [11]. These earlier descriptions, however,
do not give any details of the algorithm, although the incre-
mental deletion algorithm is described in [14]. The current
implementation is much improved, in particular through the
use of the active set method described in Section 4.1.

Baraff [1] describes a quadratic optimization algorithm for
solving linear constraints that arise in modelling physical sys-
tems. Finally, much of the work on constraint solvers has
been in the logic programming and constraint logic program-
ming communities. Current constraint logic programming
languages such as CLP() [15] include efficient solvers for
linear equalities and inequalities. (See [16] for a survey.)
However, these solvers use a refinement model of computa-
tion, in which the values determined for variables are succes-
sively refined as the computation progresses, but there is no
notion as such of state and change. As a result, these systems
are not so well suited for building interactive graphical appli-
cations.

2

2 INCREMENTAL SIMPLEX
As you see, the subject of linear programming is sur-

rounded by notational and terminological thickets. Both
of these thorny defenses are lovingly cultivated by a co-
terie of stern acolytes who have devoted themselves to
the field. Actually, the basic ideas of linear programming
are quite simple. – Numerical Recipes, [18, page 424]

We now describe an incremental version of the simplex algo-
rithm, adapted to the task at hand. In the description we use
a running example, illustrated by the diagram in Figure 1.

Figure 1: Simple constrained picture

The constraints on the variables in Figure 1 are as follows:
is constrained to be the midpoint of the line from to
, and is constrained to be at least 10 to the left of . All

variables must lie in the range 0 to 100. Since
in any solution, we simplify the problem by removing the re-
dundant bounds constraints. However, even with these sim-
plifications the resulting constraints have a cyclic constraint
graph, and cannot be handled by methods such as Indigo.

We can represent this using the constraints

Now suppose we wish to minimize the distance between
and or in other words, minimize .

2.1 Augmented Simplex Form
An optimization problem is in augmented simplex form if
constraint has the form , where and

are conjunctions of linear arithmetic equations and is
is a variable in , and the objective function

is a linear expression over variables in . The simplex
algorithm does not itself handle variables that may take neg-
ative values (so-called unrestricted variables), and imposes
a constraint on all variables occurring in its equa-
tions. Augmented simplex form allows us to handle unre-
stricted variables efficiently and simply; it was developed for
implementing constraint logic programming languages [16],
and we have adopted it here. Essentially it uses two tableaux
rather than one. Equations containing at least one unre-
stricted variable will be placed in , the unrestricted vari-
able tableau while , the simplex tableau, contains those
equations in which all variables are constrained to be non-
negative. The simplex algorithm is used to determine an op-
timal solution for the equations in the simplex tableau, ignor-
ing the unrestricted variable tableau for purposes of optimiza-
tion. The equations in the unrestricted variable tableau are
then used to determine values for its variables.

It is not difficult to write an arbitrary optimization problem
over linear real equations and inequalities into augmented
simplex form. The first step is to convert inequalities to equa-
tions. Each inequality of the form , where is a lin-
ear real expression and is a number, can be replaced with

where is a new non-negative slack vari-
able.

For example, the constraints for Figure 1 can be written as

minimize subject to

We now separate the equalities into and . Initially all
equations are in . We separate out the unrestricted vari-
ables into using Gauss-Jordan elimination. To do this, we
select an equation in containing an unrestricted variable
and remove the equation from . We then solve the equa-
tion for , yielding a new equation for some expression
. We then substitute for all remaining occurrences of in
, , and , and place the equation in . The

process is repeated until there are no more unrestricted vari-
ables in . In our example the third equation can be used to
substitute for and the first equation can be used
to substitute for , giving

minimize subject to

The tableau shows above the horizontal line, and and
below the horizontal line. From now on will be omit-

ted— any variable occurring below the horizontal line is im-
plicitly constrained to be non-negative. The simplex method
works by taking a an optimization problem in “basic feasible
solved form” (a type of normal form) and repeatedly applying
matrix operations to obtain new basic feasible solved forms.
Once we have split the equations into and we can ig-
nore for purposes of optimization.

A augmented simplex form optimization problem is in basic
feasible solved form if the equations are of the form

where the variable does not occur in any other equation
or in the objective function. If the equation is in , must
be non-negative. However, there is no such restriction on the
constants for the equations in . In either case the variable
is said to be basic and the other variables in the equation

are parameters. A problem in basic feasible solved form de-
fines a basic feasible solution, which is obtained by setting
each parametric variable to 0 and each basic variable to the
value of the constant in the right-hand side.

For instance, the following constraint is in basic feasible
solved form and is equivalent to the problem above.

3

minimize subject to

The basic feasible solution corresponding to this basic feasi-
ble solved form is

The value of the objective function with this solution is 50.

2.2 Simplex Optimization
We now describe how to find an optimum solution to a con-
straint in basic feasible solved form. Except for the opera-
tions on the additional unrestricted variable tableau , the
material presented in this subsection is simply the second
phase of the standard two-phase simplex algorithm.

The simplex algorithmfinds the optimumby repeatedly look-
ing for an “adjacent” basic feasible solved form whose basic
feasible solution decreases the value of the objective func-
tion. When no such adjacent basic feasible solved form can
be found, the optimum has been found. The underlying oper-
ation is called pivoting, and involves exchanging a basic and
a parametric variable using matrix operations. Thus by “ad-
jacent” we mean the new basic feasible solved form can be
reached by performing a single pivot.

In our example, increasing from will decrease the value
of the objective function. Wemust be careful as we cannot in-
crease the value of indefinitely as this may cause the value
of some other basic non-negative variable to become nega-
tive. We must examine the equations in . The equation

allows to take at most a value of ,
as if becomes larger than this, then would become neg-
ative. The equations above the horizontal line do not restrict
, since whatever value takes the unrestricted variables
and can take a value to satisfy the equation. In general,

we choose the most restrictive equation in , and use it to
eliminate . In the case of ties we arbitrarily break the tie. In
this example themost restrictive equation is .
Writing as the subject we obtain . We
replace everywhere by and obtain

minimize subject to

We have just performed a pivot, having moved out of the
set of basic variables and replaced it by .

We continue this process. Increasing the value of will in-
crease the value of the objective. Note that decreasing
will also decrease the objective function value, but as is
constrained to be non-negative, it already takes its minimum
value of in the associated basic feasible solution. Hence we
are at an optimal solution.

In general, the simplex algorithm applied to is described
as follows. We are given a problem in basic feasible solved
form in which the variables are basic and the vari-
ables are parameters.

minimize subject to

Select an entry variable such that . (An entry vari-
able is one that will enter the basis, i.e. it is currently paramet-
ric and we want to make it basic.) Pivoting on such a variable
can only decrease the value of the objective function. If no
such variable exists, the optimum has been reached. Now de-
termine the exit variable . We must choose this variable so
that it maintains basic feasible solved form by ensuring that
the new ’s are still positive after pivoting. This is achieved
by choosing an so that is a minimum element of
the set

and
If there were no for which then we could stop since
the optimization problemwould be unbounded, and so would
not have a minimum. This is not an issue in our context since
our optimization problemswill always have a lower bound of
0. We proceed to choose , and pivot out and replace it
with to obtain the new basic feasible solution. We con-
tinue this process until an optimum is reached.

2.3 Incrementality: Adding a Constraint
We nowdescribe how to add the equation for a new constraint
incrementally. This technique is also used in our implementa-
tions to find an initial basic feasible solved form for the origi-
nal simplex problem, by starting from an empty constraint set
and adding the constraints one at a time.

As an example, supposewewish to ensure the additional con-
straint that the midpoint sits in the centre of the screen. This
is represented by the constraint . If we substitute
for each of the basic variables (only) in this constraint
we obtain the equation . In order to
add this constraint straightforwardly to the tableau we create
a new non-negative variable called an artificial variable.
(This is simply an incremental version of the operation used
in the first phase of the two-phase simplex algorithm.) We let

be added to the tableau (clearly this gives a
tableau in basic feasible solved form) and then minimize the
value of . If takes the value then we have obtained a so-
lution to the problem with the added constraint, and we can
then eliminate the artificial variable altogether since it is a pa-
rameter (and hence takes the value 0). This is the case for our
example; the resulting tableau is

In general, to add a new required constraint to the tableau
we first convert it to an augmented simplex form equation by

4

adding slack variables if it is an inequality. Next, we use the
current tableau to substitute out all the basic variables. This
gives an equation where is a linear expression. If
is negative, we multiply both sides by so that the constant
becomes non-negative. If contains an unrestricted variable
we use it to substitute for that variable and add the equation
to the tableau above the line (i.e. to). Otherwise we cre-
ate an non-negative artificial variable and add the equation

to the tableau below the line (i.e. to), and mini-
mize . If the resulting minimum is not zero then the con-
straints are unsatisfiable. Otherwise is either parametric or
basic. If is parametric, the column for it can be simply re-
moved from the tableau. If it is basic, the rowmust have con-
stant 0 (since we were able to achieve a value of 0 for our ob-
jective function, which is equal to). If the row is just ,
it can be removed. Otherwise, where .
We can then pivot into the basis using this row and remove
the column for .

2.4 Incrementality: Removing a Constraint
We also want a method for incrementally removing a con-
straint from the tableaux. After a series of pivots have been
performed, the information represented by the constraintmay
not be contained in a single row, so we need a way to identify
the constraint’s influence in the tableaux. To do this, we use a
“marker” variable that is originally present only in the equa-
tion representing the constraint. We can then identify the con-
straint’s influence in the tableaux by looking for occurrences
of that marker variable. For inequality constraints, the slack
variable added to make it an equality serves as the marker,
since will originally occur only in that equation. The equa-
tion representing a nonrequired equality constraint will have
an error variable that can serve as amarker— see Section 2.5.
For requiredequality constraints, we add a “dummy”nonneg-
ative variable to the original equation to serve as a marker,
which we never allow to enter the basis (so that it always has
value 0). In our runningexample, then, to allow the constraint

to be deleted incrementally we would add a
dummy variable , resulting in . The
simplex optimization routine checks for these dummy vari-
ables in choosing an entry variable, and does not allow one
to be selected. (For simplicity we didn’t include this variable
in the tableaux presented earlier.)

Consider removing the constraint that is 10 to the left of
. The slack variable , which we added to the inequality

to make it an equation, records exactly how this equation has
been used to modify the tableau. We can remove the inequal-
ity by pivoting the tableau until is basic and then simply
drop the row in which it is basic.

In the tableau above is already basic, and so removing it
simply means dropping the row in which it is basic, obtaining

Ifwewanted to remove this constraint from the tableau before
adding (i.e. the final tableau given in Section 2.2),
is a parameter. We make basic by treating it as an entry

variable, determining the most restrictive equation, and using
that equation to pivot into the basis. (See [6] for details.)
We then remove the row. Here the row is the
most constraining equation. Pivoting to let enter the basis,
and then removing the row in which it is basic, we obtain

2.5 Handling Non-Required Constraints
Suppose the user wishes to edit in the diagram and have
and weakly stay where they are. This adds the non-

required constraints edit, stay, and stay. Suppose
further that we are trying to move to position 50, and that
and are currently at 30 and 60 respectively. We are thus

imposing the constraints strong , weak , and
weak . There are two possible translations of these
non-required constraints to an objective function, depending
on the comparator used.

For locally-error-better or weighted-sum-better, we can sim-
ply add the errors of the each constraint to form an objective
function. Consider the constraint . We define the
error as . We need to combine the errors for each
non-required constraint with a weight so we obtain the objec-
tive function , where
and are weights so that the strong constraint is always

strictlymore important than solving any combination ofweak
constraints, so that we find a locally-error-better or weighted-
sum-better solution. For the least-squares-better comparator
the objective function is

. In the presentation, we will use and
. (Cassowary actually uses symbolic weights and a

lexicographic ordering, which ensures that strong constraints
are always satisfied in preference to weak ones [6]. However,
QOCA is not able to employ symbolic weights.)

Unfortunately neither of these objective functions is linear
and hence the simplex method is not applicable directly. We
now show how we can solve the problem using optimization
algorithms based on the two alternate objective functions:
quasi-linear optimization and quadratic optimization.

3 CASSOWARY: QUASI-LINEAR OPTIMIZATION
Cassowary finds either locally-error-better or weighted-sum-
better solutions. Since every weighted-sum-better solution is
also a locally-error-better solution [4]; the weighted-sum part
of the optimization comes automatically from the manner in
which the objective function is constructed.

For Cassowary both the edit and the stay constraints will be
represented as equations of the form , where
and are non-negative variables representing the devi-

ation of from the desired value . If the constraint is satis-
fied both and will be 0. Otherwise will be positive
and will be 0 if is too big, or vice versa if is too small.
Since we want and to be 0 if possible, we make them
part of the objective function, with larger coefficients for the
error variables for stronger constraints.

Translating the constraints strong , weak ,
andweak that arise from the edit and stay constraints

5

we obtain:

The objective function to satisfy the non-required constraints
can now be restated as

minimize

An optimal solution of this problem can be found using the
simplex algorithm, and results in a tableau

minimize subject to

This corresponds to the solution
illustrated in Figure 1. Notice that the weak con-

straint on is not satisfied.

3.1 Incrementality: Resolving the Optimization Problem
Now suppose the usermoves themouse (which is editing)
to . We wish to solve a new problem, with constraints
strong , and weak and weak (so
that and should stay where they are if possible). There
are two steps. First, we modify the tableau to reflect the new
constraints we wish to solve. Second, we resolve the opti-
mization problem for this modified tableau.

Let us first examine how to modify the tableau to reflect the
new values of the stay constraints. This will not require re-
optimizing the tableau, since we know that the new stay con-
straints are satisfied exactly. Suppose the previous stay value
for variable was , and in the current solution takes value
. The current tableau contains the information that

, and we need to modify this so that instead
. There are two cases to consider: (a) both

and are parameters, or (b) one of them is basic.

In case (a) must take the value in the current solution since
both and take the value and . Hence

and no changes need to be made.

In case (b) assume without loss of generality that is ba-
sic. In the original equation representing the stay constraint,
the coefficient for is the negative of the coefficient for .
Since these variables occur in no other constraints, this rela-
tion between the coefficients will continue to hold as we per-
form pivots. In other words, and come in pairs: any
equation that contains will also contain and vice versa.
Since is assumed to be basic, it occurs exactly once in an
equation with constant , and further this equation also con-
tains the only occurrence of . In the current solution

, and since the equation

holds, . To replace the equation
by we simply need to replace the constant
in this row by . Since there are no other occurrences of
and we have replaced the old equation with the new.

For our example, to update the tableau for the new values for
the stay constraints on and we simply set the constant
of last equation (the equation for) to 0.

Now let us consider the edit constraints. Suppose the pre-
vious edit value for was , and the new edit value for
is . The current tableau contains the information that

, and again we need to modify this so that
instead . To do so we must replace every
occurrence of by , taking proper
account of the coefficients of and . (Again, remember
that and come in pairs.)

If either of and is basic, this simply involves appro-
priately modifying the equation in which they are basic. Oth-
erwise, if both are non-basic, then we need to change every
equation of the form

to

Hence modifying the tableau to reflect the new values of edit
and stay constraints involves only changing the constant val-
ues in some equations. The modifications for stay constraints
always result in a tableau in basic feasible solved form, since
it never makes a constant become negative. In contrast the
modifications for edit constraints may not.

To return to our example, suppose we pick up with the
mouse and move it to 60. Then we have that and

, so we need to add 10 times the coefficient of
to the constant part of every row. The modified tableau, after
the updates for both the stays and edits, is

minimize subject to

Clearly it is feasible and already in optimal form, and so we
have incrementally resolved the problem by simply modify-
ing constants in the tableaux. The new tableaux give the so-
lution . So sliding the mid-
point rightwards has caused the right point to slide rightwards
as well, but twice as far. The resulting diagram is shown at the
top of Figure 2.

Suppose we now move from 60 to 90. The modified
tableau is

6

Figure 2: Resolving the constraints

minimize subject to

The tableau is no longer in basic feasible solved form, since
the constant of the row for is negative, even though is
supposed to be non-negative.

Thus, in general, after updating the constants for the edit con-
straints, the simplex tableau may no longer be in basic fea-
sible solved form, since some of the constants may be nega-
tive. However, the tableau is still in basic form, sowe can still
read a solution directly from it. And since no coefficient has
changed, in particular in the optimization function, the result-
ing tableau reflects an optimal but not feasible solution.

We need to find a feasible and optimal solution. We could do
so by adding artificial variables (as we didwhen adding a con-
straint), optimizing the sum of the artificial variables to find
an initial feasible solution, and then reoptimizing the original
problem. But we can do much better. The process of moving
from an optimal and infeasible solution to an optimal and fea-
sible solution is exactly the dual of normal simplex algorithm,
where we progress from a feasible and non-optimal solution
to feasible and optimal solution. Hence we can use the dual
simplex algorithm to find a feasible solutionwhile staying op-
timal.

Solving the dual optimization problem starts from an infeasi-
ble optimal tableau of the form

minimize subject to

where some may be negative for rows with non-negative
basic variables (infeasibility) and each is non-negative
(optimality).

The dual simplex algorithm selects an exit variable by find-
ing a row with non-negative basic variable and negative

constant . The entry variable is the variable such that the
ratio is the minimum of all where is pos-
itive. This ensures that when pivoting we stay at an optimal
solution. The pivot, replacing by

is performed as in the (primal) simplex algorithm.

Continuing the example above we select the exit variable ,
the only non-negative basic variable for a row with negative
constant. We find that has the minimum ratio since its co-
efficient in the optimization function is 0, so it will be the en-
try variable. Replacing everywhere by

we obtain the tableau

minimize subject
to

The tableau is feasible (and of course still optimal) and rep-
resents the solution . So by
sliding the midpoint further right, the rightmost point hits the
wall and the left point slides right to satisfy the constraints.
The resulting diagram is shown at the bottom of Figure 2.

To summarize, incrementally finding a new solution for
new input variables involves updating the constants in the
tableaux to reflect the updated stay constraints, then updat-
ing the constants to reflect the updated edit constraints, and
finally reoptimizing if needed. In an interactive graphical ap-
plication, when using the dual optimization method typically
a pivot is only required when one part first hits a barrier, or
first moves away from a barrier. The intuition behind this is
that when a constraint first becomes unsatisfied, the value of
one of its error variables will become non-zero, and hence the
variable will have to enter the basis; when a constraint first
becomes satisfied, we can move one of its error variables out
of the basis.

In the example, pivoting occurred when the right point
came up against a barrier. Thus, if we picked up the mid-
point with the mouse and smoothly slid it rightwards, 1
pixel every screen refresh, only one pivot would be required
in moving from 50 to 95. This illustrates why the dual opti-
mization is well suited to this problem and leads to efficient
resolving of the hierarchical constraints.

4 QOCA: QUADRATIC OPTIMIZATION
Another useful way of comparing solutions to constraint hier-
archies is least-squares-better, in which case we are interested
in solving optimization problems of the following form, re-
ferred to as :

minimize subject to
where

7

The variables are , and is the set of required
constraints. The desired value for variable is , and the
“weight” associated with that desire (which should reflect the
hierarchy) is .

This problem is a type of quadratic programming in which a
quadratic optimization function is minimized with respect to
a set of linear arithmetic equality and inequality constraints.
In particular, since the optimization function is a sum of
squares, the problem is an example of convex quadratic pro-
gramming, meaning that the local minimum is also the global
minimum. This is fortunate, since convexquadratic program-
ming has been well-studied and efficient methods for solv-
ing these problems are well-known in the operations research
community.

4.1 Active Set Method
Our implementation of QOCA uses the active set method [8]
to solve the convex quadratic programming problem. This
method is an iterative technique for solving constrained op-
timization problems with inequality constraints. It is reason-
ably robust and quite fast, and is the method of choice for
medium scale problems consisting of up to 1000 variables
and constraints.

The key idea behind the algorithm is to solve a sequence of
constrained optimization problems , ..., . Each problem
minimizes with respect to a set of equality constraints, ,
called the active set. The active set consists of the original
equality constraints plus those inequality constraints that are
“tight,” in other words, those inequalities that are currently
required to be satisfied as equalities. The other inequalities
are ignored for the moment.

Essentially, each optimization problem can be treated as
an unconstrainedquadratic optimization problem, denoted by
. To obtain , we rewrite the equality constraints in in

basic feasible solved form, and then eliminate all basic vari-
ables in the objective function . The optimal solution is the
point at which all of the partial derivatives of equal zero.
The problem can be solved easily, since we are dealing
with a convex quadratic function and so its derivatives are
linear. As a result, to solve we need only solve a system
of linear equations over unconstrained variables.

In more detail, in the active set method, we assume at each
stage that a feasible initial guess is avail-
able, as well as the corresponding active set . Assume that
we have just solved the optimization problem , and let its
solution be . We face the following two possibilities when
determining the new approximate solution .

1. is feasible with respect to the constraints in but it
violates some inequality constraints in that are not in
the current active set . In this case, a scalar
is selected, such that it is as large as possible and the point

is feasible. This point is taken as the new
approximate solution , and the violated constraints are
added to the active set, giving rise to a new optimization
problem .

2. is feasible with respect to the original problem . It is

directly taken as the new approximate solution and we
test to see it is also optimal . This requires us to check
if there exists a direction at , such that a feasible in-
cremental step along reduces . If such direction ex-
ists, then one constraint is taken out of the active set to
generate the direction , which results in a new optimiza-
tion problem . If no such direction exists we are finished
since is both feasible and optimal.

If the active set is modified, the whole process is repeated un-
til the optimal solution is reached.

Consider our working example with the weak constraints that
, and . This gives rise to the mini-

mization problem

minimize
subject to

Although it is obvious that or
is the optimal solution, it is still instruc-

tive to see how the active set method computes this. The ini-
tial guess and active set are read from the augmented simplex
form tableux. We start with an initial guess

, i.e. , and constraints 1, 3 and 4
are active. Thus is the initial active set. The
equality constrained optimization problem is therefore

minimize subject to

The problem has only one feasible solution
, so it is also the optimal solution, de-

noted by . Next we check if is the optimal solution to
the problem . Constraint 4 forces to take the value 0
in . However, the value of the objective function can be
reduced if is increased. Thus the 4th constraint can
be moved out of the active set in order to further reduce the
value of . This gives as the new approximate so-
lution, as the active set and the optimization
problem as

minimize subject to

To solve , we rewrite the constraints in to a basic
feasible solved form , and then
eliminate basic variables in the function . This results in
the following unconstrained optimization problem

8

minimize

Setting the derivative to be zero we obtain

Solving this together with the constraint in , the optimal
solution of is found to be . It is
easy to verify that is still feasible. Similarly to the case for
, in is forced to take the value 100 because of the 3rd

constraint, yet the function value can be reduced if is
decreased. So the 3rd constraint is moved out
of the active set. We now have the new approximate solution

, the active set and the optimization
problem :

minimize subject to
To solve this problem, we repeat the same procedure as for
solving . The solution to this problem satisfies the equa-
tions:

(1)

These together with the constraint in have the solution
. This is the optimal solution to and

is also the optimal solution to the original problem .

Figure 3: Resolving the constraints using QOCA

Now imagine that we have started to manipulate the diagram.
We have the weak constraints that and
and the strong constraint that . Reflecting this, we
change the first term in the function to be ,
denote it as and the corresponding optimization problem
as . Starting from , which is the opti-
mal solution to , an equality constrained problem is
formed. is the same as , except that they have dif-
ferent objective functions. The solution to satisfies sim-
ilar linear equations to those of (1). These can be obtained by
replacing the term in the first equation of (1) by

reflecting the change in the objective func-
tion. A solved form for these equations is

(2)

which leads to the optimal solution for both and
as . (The exact least-
squares-better solution is actually
. With quadratic optimization the strong constraints don’t

completely dominate theweak ones in the computed solution.
However, by choosing a suitably large constant we found a
solution that is least-squares-better to under a one-pixel res-
olution, so that the deviation from a least-squares-better so-
lution would not be visible in an interactive system. (See [6]
for more on this issue.)

To modify the active set method so that it is incremental for
resolving, we observe that changing the desired variable val-
ues only changes the optimization function . Thus we can
reuse the active set from the last resolve and reoptimize with
respect to this. In most cases the active set does not change,
and so we are done. Otherwise we proceed as above.

For example, if we now move from 60 to 90, we change
the objective function again, but need only change the de-
sired values and can keep the weights the same as they are
in , e.g. in the new objective function , the variable
has a new desired value 90. The corresponding optimiza-
tion problem is referred to as . To solve this problem,
the resolve procedure makes use of the information from the
previous solve , while applying the active set method to

. When resolving, it is important to notice that, if we start
from the solution for the previous problem , i.e.

, then the solution to the correspond-
ing equality constrained problem ,

minimize subject to ,

can be easily obtained. In fact, one can just replace the
desired value 60 for in (2) by its new desired value
90, which leads to the optimal solution to as

. If the desired value does not
change too much, it is quite likely that is also optimal for

. Unfortunately, this is not the case for this example,
since violates the 3rd constraint . Choos-
ing to be as big as possible while still ensuring that

is feasible, we have and
as the new approximate solution, at

which the 3rd constraint becomes active. By solving the cor-
responding equality constrained problem ,

minimize subject to ,

the optimal solution to is found to be ,
, .

Figure 3 shows the effect of moving the horizontal line with
the least squares comparator. With this comparator the line
moves right maintaining the same length until it hits the right
boundary, at which point it starts to compress. This contrasts
with the behaviour of the locally-error-better comparator in
which the line grew until it bumped against the side.

5 EMPIRICAL EVALUATION
Our algorithms for incremental addition and deletion of
equality and inequality constraints and for solving and re-
solving for the least-square comparator using the QOCA al-
gorithm have been implemented as part of the QOCA C++
constraint solving toolkit. The results are very satisfactory.

9

For a test problem with 300 constraints and 300 variables,
adding a constraint takes on average msec, deleting a con-
straint msec, the initial solve msec, and subsequent re-
solving as the point moves msec. For a larger problem
with 900 constraints and variables, adding a constraint takes
on average msec, deleting a constraint msec, the ini-
tial solve msec, and subsequent resolving as the point
moves msec. These tests were run a sun4m sparc, running
SunOS 5.4.

Running Cassowary on the same problems, for the 300 con-
straint problem, adding a constraint takes on average msec
(including the initial solve), deleting a constraint msec,
and resolving as the point moves msec. (Stay and edit
constraints are represented explicitly in this implementation,
so there were also stay constraints on each variable, plus
two edit constraints, for a total of 602 constraints.) For
the 900 constraint problem, adding a constraint takes on av-
erage msec (again including the initial solve), deleting
a constraint msec, and resolving as the point moves
msec. These tests were run using an implementation

in OTI Smalltalk Version 4.0 running on a IBM Thinkpad
760EL laptop computer.

As these measurements are for implementations in different
languages, running on different machines, they should not be
viewed as any kind of head-to-head comparison. Neverthe-
less, they indicate that both algorithms are eminently practi-
cal for use with interactive graphical applications.

TheQOCA toolkit has been employed in a numberof applica-
tions. The first application is part of an intelligent pen and pa-
per interface that contains a parser to incrementally parse dia-
grams drawn by the user using a stylus, and that has a diagram
editor that respects the semantics of the diagram by preserv-
ing the constraints recognized in the parsing process. QOCA
is used for both error correction in parsing and for diagram
manipulation in the editor [7]. A secondQOCA application is
for layout of trees and graphs in the presence of arbitrary lin-
ear arithmetic constraints and with suggested placements for
some nodes [9]. A Cassowary application currently being de-
veloped is a web authoring tool [5], in which the appearance
of a page is determined by constraints from both the web au-
thor and the viewer.

Acknowledgments
This project has been funded in part by the National Science
Foundation under Grants IRI-9302249 and CCR-9402551
and byObject Technology International. AlanBorning’s visit
to Monash University and the University of Melbourne was
sponsored in part by the Australian-American Educational
Foundation (Fulbright Commission).

REFERENCES
1. D. Baraff. Fast contact force computation for nonpenetrating
rigid bodies. In SIGGRAPH ’94, pages 23–32.

2. A. Borning, R. Anderson, and B. Freeman-Benson. Indigo:
A local propagation algorithm for inequality constraints. In
UIST’96, pages 129–136, Seattle, Nov 1996.

3. A. Borning and B. Freeman-Benson. The OTI constraint
solver: A constraint library for constructing interactive graph-

ical user interfaces. In Proc. Constraint Programming’95,
Springer-Verlag LNCS Vol 910, Sep 1995.

4. A. Borning, B. Freeman-Benson, and M. Wilson. Constraint
hierarchies. Lisp and Symbolic Computation, 5(3):223–270,
Sep 1992.

5. A. Borning, R. Lin, and K. Marriott. Constraints for the web.
In Proc. ACM MULTIMEDIA’97, Nov 1997. To appear.

6. A. Borning, K. Marriott, P. Stuckey, and Y. Xiao. Solving lin-
ear arithmetic constraints for user interface applications: Al-
gorithm details. Tech report 97-06-01, Dept. Computer Sci-
ence & Engr, Univ of Washington, Seattle, WA, July 1997.

7. S.S. Chok and K. Marriott. Automatic construction of user in-
terfaces from constraint multiset grammars. In IEEE Sympo-
sium on Visual Languages, pages 242–250, 1995.

8. R. Fletcher. Practical Methods of Optimization. Wiley, 1987.
9. W. He and K. Marriott. Constrained graph layout. In Graph

Drawing ’96, Springer-Verlag LNCS Vol 1190, pages 217–
232.

10. R. Helm, T. Huynh, C. Lassez, and K. Marriott. A linear con-
straint technology for interactive graphic systems. InGraphics
Interface ’92, pages 301–309, 1992.

11. R. Helm, T. Huynh, K. Marriott, and J. Vlissides. An object-
oriented architecture for constraint-based graphical editing.
In Proc. Third Eurographics Workshop on Object-oriented
Graphics, Champery, Switzerland, Oct 1992.

12. H. Hosobe, S. Matsuoka, and A. Yonezawa. Generalized local
propagation: A framework for solving constraint hierarchies.
In Proc. Constraint Programming’96, Springer-Verlag LNCS
Vol 1118, Aug 1996.

13. S.E. Hudson and I. Smith. SubArctic UI toolkit user’s manual.
Tech report, College of Computing, Georgia Tech, 1996.

14. T. Huynh and K. Marriott. Incremental constraint deletion in
systems of linear constraints. Information Processing Letters,
55:111–115, 1995.

15. J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The CLP()
language and system. ACM TOPLAS, 14(3):339–395, July
1992.

16. K. Marriott and P. Stuckey. Introduction to Constraint Logic
Programming. MIT Press, 1997. In preparation.

17. B.A. Myers. The Amulet user interface development environ-
ment. In ACM CHI’96 Conference Companion, Apr 1996.

18. W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetter-
ling. Numerical Recipes: The Art of Scientific Computing.
Cambridge, 1989.

19. M. Sannella, J. Maloney, B. Freeman-Benson, and A. Born-
ing. Multi-way versus one-way constraints in user interfaces:
Experience with the DeltaBlue algorithm. Software—Practice
and Experience, 23(5):529–566, May 1993.

20. I. Sutherland. Sketchpad: A man-machine graphical commu-
nication system. In Proc. Spring Joint Computer Conference,
pages 329–346. IFIPS, 1963.

21. B. Vander Zanden. An incremental algorithm for satisfying
hierarchies of multi-way dataflow constraints. ACM TOPLAS,
18(1):30–72, Jan 1996.

10

