
CHI 90 Pmceedrws April 1990 

ADAPTIVE SEMANTIC SNAPPING - A TECHNIQUE 
FOR SEMANTIC FEEDBACK AT THE LEXICAL LEVEL 

Scott E. Hudson 

Department of Computer Science 
University of Arizona 

Tucson, AZ 85721 
hudson@cs.arizona.edu 

ABSTRACT 
This paper describes the implementation of semantic 
snapping - an interaction technique that provides semantic 
feedback at the lexical level while dragging a graphical 
object on the screen. Like conventional snapping, or 
gravity Betis, semantic snapping includes a geometric 
component where objects in close proximity are drawn 
together or “snap” into position. However, semantic 
snapping goes further by allowing non-geometric 
(semantic) properties of objects to place additional 
constraints on snapping. Semantic snapping also provides 
more complex lexical feedback which reflects potential 
semantic consequences of a snap. This paper motivates the 
use of semantic snapping and describes how this technique 
has been implemented in a window-based toolkit. This 
implementation works in an adaptive manner to provide the 
best interactive response in situations where semantic tests 
are very time consuming and strain the limits of acceptable 
performance. 

INTRODUCTION AND MOTIVATION 
The interaction technique of snapping or gravityfields was 
introduced as part of some of the earliest work in interactive 
computer graphics. This technique is applied when 
graphical objects are dragged or stretched on the screen. 
Screen positions that correspond to correct or preferred 
ending points for the drag are given gravity - that is, when 
the cursor is near one of these points (or lines) it is attracted 
to, or snapped to, that point. For example, in a schematic 
diagram editor, component symbols and wires are typically 
attached to each other rather than being placed in arbitrary 
unconnected positions. Snapping allows these legal 
connected positions to be specified in preference to illegal 
unconnected positions. This allows the user to specify 

This work was supported in part by the National Science 
Foundation under grant W-8702784. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of 
the publication and its date appear, and notice is given that copying 
is by permission of the Association for Computing Machinery. To 
copy otherwise, or to republish requires a fee and/or specific 
permission. 

0 1990 ACM O-89791 -345-O/90/0004-0065 1.50 

connections more easily and with less precise movements. 
As a result, for tasks that can employ snapping, it is 
sometimes possible to overcome the fundamental 
limitations of human performance described by Fitts’ law 
IFitt54]. 

Unfortunately, snapping has not been supported by the 
toolkits now popular for user interface development (see for 
example [McCo88, Lint89]) and the use of snapping in 
modern systems in general has not been widespread. A 
notable exception to this is the Gargoyle drawing editor 
[Bier86a]. In this system, reference objects that are not part 
of the final drawing may be used as guides for alignment 
and geometric construction. These reference objects, as 
well as their intersection points, are given gravity to make 
alignment and construction easier. Because these reference 
objects represent a locus of semantically interesting points, 
the techniques employed by the Gargoyle drawing editor 
(and in related work [Bier86b, Bier88]) can be seen as a 
form of semantic snapping. However, these techniques rely 
solely on geometric constraints to control snapping and 
provide feedback. ‘Ihe techniques presented here are 
specifically designed to compliment this approach by 
supporting additional control and feedback based on 
semantic properties that are not adequately expressed in a 
geometric context. 

A good example of this occurs in visual programming 
environments such as the one shown in Figure 1. In this 
environment computational elements are represented by 
icons and dataflow between these computational elements is 
represented by lines. An editor for.constructing these visual 
programs should perform type and other semantic checking. 
For example, the system shown in Figure 1 must ensure 
that connected ports send and receive data values of 
compatible types and that cycles are not introduced. In 
general, we support the view that: 

It is better to prevent errors than to simply 
report them after they occur. 

Consequently, one goal of a program editor like the one 
shown in Figure 1 might be to not only detect cycles and 
type conflicts, but prevent them. This can be done using 
semantic snapping. As dataflow lines are stretched between 

65 



CHI 90 Proceedings Apfil1990 

./ 1 j:; 

.I ’ 1.j 

ii ii 

.I : I .I 

Figure 1. A Visual Programming Application 

ports, they snap only to legal connecting ports and never to 
ports which would represent an error. Figure I shows the 
feedback for such a legal snap between the “Select” and 
“Extend” nodes. 

As shown in Figure 2, illegal ports can supply anri-gravity 
which provides negative feedback for illegal connections. 
In this example, the user is attempting to create a cycle by 
connecting to the port at the left hand comer. The 
connection is of course disallowed, but the system also 
provides appropriate feedback indicating why the connection 
can’t be made. In general, any desirable or undesirable 
property of a connection between objects can be tested and 
used as the basis for snapping control and feedback. This 
allows important but otherwise invisible properties of the 
objects being manipulated to be made apparent. It also 
allows the consequences of user actions to be indicated 
before the user commits to these actions. Both these 
properties serve to improve the directness of the interface 
~utc86]. 

In the next section a simple set of primitive snapping 
concepts will be considered along with techniques to aIlow 
the user more control over snapping. In Section 3, an 
implementation of semantic snapping in a window-based 
toolkit will be described. This implementation employs 
novel techniques that directly measure the progression of 
real time in order to adapt the system to the timing required 
for good interactive response. This is particularly 

important in situations where semantic tests are complex 
and strain the limits of acceptable response time. Finally, 
Section 4 will present conclusions. 

SNAPPING CONCEPTS 
In a wide range of interfaces such as graph, diagram, or 

schematic editors, the result of dragging is often to make a 
connection or relationship between two underlying objects. 
For example, in some systems [Myer86, Myer89, Huds89], 
geometric positions are used to infer constraints. Such 
constraints and relationships normally have implications in 
the underlying application domain. A primary purpose of 
semantic snapping is to express these important semantic 
implications to the user as early as possible. 

Semantic snapping is built on a geometric basis - an 
object or set of objects that represent legal, desirable, or 
semantically interesting locations. These locations are 
often fixed, but sometimes must be computed “on the fly” 
based on factors such as the state of the interaction, values 
found in the underlying application data, and the object 
currently being dragged. These locations are often points, 
however, snapping to line segments and circles can also be 
useful. 

Each object that supports snapping may have one or more 
snapping locations, or sires, associated with it. All 
snapping is done on the basis of snap sites rather than 
whole objects, IEach site may be active or inactive at any 

66 



CHI 90 Ptoceedir-~~ Apil19!30 

Figure 2. Anti-gravity Feedback for an Illegal Connection 

given time. Activity or inactivity of a site is determined by 
a predicate function supplied by the site. This function has 
access to the internal state of the object and may test 
arbitrary semantic properties to determine its result. For 
example, the sites used in the visual programming system 
shown in Figures 1 and 2 are disabled when their maximum 
fan-in or fan-out has been exceeded. 

Once a set of sites has been declared, it is the job of the 
snapping system to continuously search for a valid snap 
site and to provide appropriate feedback when one is found. 
This is done by finding the site closest to the cursor which: 
a) is active, b) is within a critical snapping distance, and c) 
passes semantic tests provided by the snap sites involved. 
In particular, each snap site provides a predicate function 
that can dynamically test whether a potential snap is 
semantically valid. One of the major focuses of the work 
presented here is a set of implementation techniques that 
attempts to provide the best possible response in situations 
where these semantic tests are time consuming. 

!t is also the job of the snapping system is to provide 
feedback about snaps. Whenever a new valid snap site is 
found, both the object being dragged and the object being 
snapped to are informed by calling a feedback function. 
This function is implemented by the object so that it can 
provide feedback that reflects both the state of the object and 
semantic consequences of the snap. Similarly, whenever an 
existing snap is broken - either by moving too k away 

or by explicit user action (see below) - both objects are 
informed so that feedback can be removed. In addition, to 
normal snap feedback, each site has the option of providing 
negative “anti-gravity” feedback. As illustrated in Figure 2, 
this feedback serves the purpose of an error message, 
indicating that a snap cannot be perf6rmed and why. Anti- 
gravity feedback is applied only when no valid snap can be 
found. Like normal feedback it is applied to the closest site 
which: a) is active, b) is within snapping distance, c) fails 
semantic tests, and d) has requested the application of anti- 
gravity. 

In addition to the application of feedback, the snap system 
is responsible for resolving ambiguous snaps and for 
providing a user controlled reject capability. Because the 
active region of a snap site extends over au area rather than 
a single point (of line or circle), sites that have overlapping 
gravity fields may be difficult to select correctly. In 
addition, it may be possible for one cursor location to be 
equally close to more than one site, resulting in an 
ambiguous situation. This is particularly difficult to deal 
with if two or more sites occur at exactly the same pixel 
location (e.g. when both a line segment and its endpoints 
are snap sites). In situations where snaps are ambiguous, a 
priority scheme is used to select one site from among ties. 
However, this system is too limited to serve in all cases. 
To overcome this problem it is essential that a snap system 
also allow user controlled rejection of snaps. In the system 
described here, users may explicitly reject a snap by 

67 



CHI 90 Pmeediqs April 1!390 

pushing another locator button or a designated keyboard 
key. Once a snap is rejected, the corresponding site is 
temporarily inactivated so that it does not interfere with 
selection of nearby sites. An inactivated site may be 
reactivated either by starting a new drag, or by moving far 
away from the snap site then returning. 

IMPLEMENTATION 
The snapping concepts introduced in the last section have 
been implemented in Artkit- the Arizona Retargetable 
Toolkit. This system is an object-oriented toolkit written 
in C and C++ which is designed to be hosted by a number 
of different underlying window systems. The toolkit 
currently runs under both the X and the SunView window 
systems and can be easily retargeted to additional window 
systems. 

The primary challenge of implementing semantic snapping 
is making it run quickly enough so that good interactive 
response can be provided even when time consuming 
semantic tests need to be performed. The Artkit 
implementation uses four techniques to produce a fast 
implementation - a good geometric search algorithm, 
declaration and optimization of common special cases, 
“hiding” of work based on non-linear human perception of 
response time, and most importantly, adaptation based on 
monitoring of actual real-time performance. 

Because the geometric proximity tests required for snapping 
(i.e., finding all the sites within the critical snapping 
distance) are typically faster than semantic tests, geometric 
searching is done first. Semantic tests are performed only 
on the small set of active snap sites found to be within 
snapping distance. 

The geometric search done in the Artkit implementation is 
based on a bucketing technique. In this scheme, each 
window is broken up into square buckets of a fixed size and 
each snap site is assigned to the bucket or buckets it occurs 
in. Most sites have a static position and stay in one 
bucket, but some sites may have to have their bucket 
recomputed when dragging starts. The system currently 
uses a fixed bucket size of 32x32 pixels. This size 
represents a good compromise in space versus speed. If 
1024x1024 is assumed to be the largest window size, there 
will be at most 1024 buckets in a window. Thus, space for 
the bucket structure itself is not unreasonable (a maximum 
of 4k bytes per window). Furthermore, using the high- 
density rejection technique described below, it is possible to 
guarantee that no more than 114 snap sites occur in one 
bucket. This corresponds to a snap site at every third pixel 
and is a reasonable approximation to the upper limit of 
what the user can handle interactively. Since the cursor 
may be near the corner of a bucket and hence the snapping 
area may overlap 4 buckets, this leads to an absolute 
maximum of 456 snap sites that must be considered at any 
time. 

Large numbers of snap sites that occnr very close together 
(within a few pixels) can place a heavy burden on the snap 

test algorithm, requiring many sites to be tested for each 
cursor movement and potentially overloading some buckets. 
In addition, when snap sites occur close together, it is 
difficult for the user to select the desired site even when the 
exact pixel position of the site can be determinerl visually. 
In cases of ambiguity, the system makes what amounts to a 
reasonable guess (the closest site with ties broken by 
priority) in its :selection of a snap site. It then allows the 
user to explicitly reject this point if the guess was wrong. 
In order to limit. the number of sites that must be considered 
on each cursor movement, the snap search algorithm 
modifies the way this guess is made in instances where 
sites are very close together (within 3 pixels in x and y). In 
particular, the system temporarily eliminates from 
consideration snap sites that are too close to other (higher 
priority) snap sites. If a site is explicitly rejected, any 
previously eliminated site will be placed back into 
consideration so that it can be subsequently picked by the 
user. This approach keeps the system from bogging down 
when overloaded, resulting in better performance when the 
system is saturated, with little or no effect on the end user. 

Once the set of sites within snapping distance has been 
determined, semantic tests are performed (closest snap site 
first) to make a final selection. Semantic tests are 
performed by calling a predicate function provided by each 
snap site. In some rare cases, the result of the predicate 
depends on a continuously varying value. However, 
usually, the result of the predicate depends only on values 
that do not change over the course of a single dragging 
interaction and the predicate need not be evaluated more than 
once for each drag. In some other situations, the result of a 
predicate does n,ot depend on the object being dragged and 
changes only rarely. Here, the underlying application can 
inform the snap system whenever changes occur. The 
system handles each of these cases - conthuous, single, 
and demand evaluation - separately. For demand 
evaluation, the application informs the snapping system 
whenever the result of the semantic test might change. The 
system then evaluates the test function and remembers the 
result. By default, single evaluation is used so that the 
system evaluates each test function at most once and 
remembers the result for the duration of the drag. Only in 
the case of continuous evaluation does the system evaluate 
the semantic test function each time the cursor moves. 

Human perception of response time in dragging tasks has 
not been widely studied and to the author’s knowledge, no 
study has ever been made of dragging with snapping. 
However, early studies of remote control manipulation of 
objects under time delay (see for example (Sher631) along 
with informal experience with dragging tasks, indicates that 
dragging with long lags in response is difficult to control. 
Conversely, delays below a small threshold tend to remain 
unnoticed. The system uses these facts to attempt to ensure 
good interactive response. 

The system directly monitors real-time performance and 
adapts in an effort to meet response time goals. In 
particular, the system uses soft limits for the time spent at 

68 



CHI 90 l’mxedim Apfill990 

the beginning of a drag (usually after a locator button down 
event) and for the time spent after each cursor movement 
event. The system performs semantic tests until either a 
snap site is determined or the time limit has expired and a 
new event is waiting to be processed (note: time limits are 
non-preemptive). if the time limit has expired, the best 
snap site found thus far is used. If no valid snap sites are 
found within the time limit, no snap is made, but the 
system resumes testing where it left off when processing 
the next movement event. This ensures that if the cursor 
stays in the area of a valid snap site, the system will 
eventually find it. While the system cannot always meet 
response time goals, this approach allows the system to 
degrade gracefully. In situations where it cannot meet 
performance goals, the system either selects a nearby valid 
snap site or delays snapping for several movement events. 
In either case, disruption of normal system functioning is 
minimized. Furthermore, this approach allows the system 
to automatically respond to varying system load as well as 
providing transparent portability to new processors with 
difh-ing speed. 

In addition to real-time response goals, the system also 
attempts to “hide” work by making use of the non-linear 
human perception of response time. When a snap site is 
found very quickly, additional time - up to a minimum 
target time designed to remain unnoticed by the user - is 
spent evaluating the semantic functions of nearby snap 
sites. This allows work to be hidden in unperceived delays 
in hopes of shortening later delays. Similarly, informal 
experience indicates more user tolerance for delay at the 
immediate beginning of a drag (i.e., after a locator button 
has been pressed but before selection feedback has been 
provided) than during the drag itself. Consequently, the 
time limit at this point in the interaction is made longer. 
This allows the system to get a head start by evaluating the 
semantic functions of snap sites near the initial cursor 
position. 

The system allows the application to provide time limits. 
However, it also provides defaults for these values. The 
current, defaults were arrived at by trail and error and are 
only preliminary approximations - no claim is made as to 
their “correctness” from a human factors point of view. A 
more formal and complete study is needed to determine how 
these default values should really be set in practice. 

The four techniques described above - a good geometric 
search algorithm, declaration and optimization of common 
special cases, “hiding” of work , and most importantly, 
adaptation based on monitoring of actual real-time 
performance - serve to create an implementation which is 
very robust and which degrades gracefully in the presence of 
expensive semantic tests. This allows applications 
designers to use semantic snapping with confidence, 
knowing the system will automatically adapt to varying 
loads and exceptional situations. 

CONCLUSION 

This paper has considered an implementation of semantic 
snapping. Semantic snapping offers a number of 
advantages by increasing the level of feedback provided to 
the user and by allowing errors to be prevented rather than 
simply detected. An adaptive implementation technique for 
semantic snapping has also been discussed. This technique 
uses soft real-time limits to monitor interactive response of 
the system and to automatically adapt the performance of 
the system. This allows the system to degrade gracefully 
and provide the best response under high load situations. 

REFERENCES 

[Bier86a] 

[Bier86b] 

[Bier881 

[BOW 

[Card881 

[Fitt54] 

[Gold831 

wuds89] 

Bier, E., Stone, C., Snap-Dragging, Computer 
Graphics, ~20, n4, August 1986, pp. 233-240. 

Bier, E., Skitters and Jacks: Interactive 3D 
Positioning Tools. Proceedings of the ACM 
SIGGRAPH Workshop on Interactive 30 
Graphics, Chapel Hill, NC, October 1986, pp. 
183-196. 

Bier, E., Snap-Dragging: Interactive Geometric 
Design in Two and Three Dimensions, 
University of California, Berkeley, Technical 
Report UCBKSD 881416, April 1988. 

Boming, A., Defining Constraints Graphically, 
Proceedings of CHI ‘86, Boston, April 1986, 
pp. 137-143. 

Cardelli, L., Building User Interfaces by Direct 
Manipulation, Proceedings of the ACM 
SIGGRAPH Symposium on User Interface 
Softwnre, Banff, Alberta, Canada, October 
1988, pp. 152-166. 

Fitts, P., The Information Capacity of the 
Human Motor System in Controlling the 
Amplitude of Movement, Journal of 
Experimental Psychology, v 41, June 1954, 
pp. 381-391. 

Goldberg, A., Robson, D., Smalltalk-80: lie 
Language and its Implementation, Addison- 
Wesley, Reading, Mass;, 1983. 

Hudson, S., Graphical Specification of Flexible 
User Interface Displays, Proceedings of the 
ACM SIGGRAPH Symposium on User 
Interface Software and Technology, November 
1989, pp. 105-l 14. 

69 



CHI 90 l’meedim &nil 1990 

mutc86] 

[Lint891 

[McCo88] 

FIYer=l 

[Meyr89] 

[Sher63] 

Hutchins, E., H&II, J., Norman, D., Direct 
Manipulation Interfaces, in User Centered 
systems Design, D. Norman and S. Draper 
(ed), Lawrence Erlboum Associates, Hillsdale, 
New Jersey, 1.986, pp. 87-124. 

Linton, M., Vlissides, J., Calder, R., 
Composing 1Jser Interfaces with Interviews, 
IEEE Computer, ~22, ~2, February 1989, pp. 
8-22. 

McCormack, J., Asente, P., An Overview of 
the X Toolkit, Proceedings of the ACM 
SIGGRAPH Symposium on User Interface 
Sojbvare, Banff, Alberta, Canada, October 
1988, pp. 46-55. 

Myers, B., Buxton, W., Creating Highly- 
Interactive Graphical User Interfaces by 
Demonstration, Computer Graphics, ~20, n4, 
August 1986, pp. 249-258. 

Myers, B., Vander Zanden, B., Dannenberg, R., 
Creating Graphical Interactive Application 
Objects by Demonstration, Proceedings of the 
ACM SIGGRAPH Symposium on User 
Interface Sojbvare and Technology, November 
1989, pp. 95-104. 

Sheridan, T., Ferrell, W., Remote Manip- 
ulative Control With Transmission Delay, 
IEEE Transactions on Human Factors in 
EZectronics, vHFE-4, nl, September 1963, pp. 
25-29. 

70 


