
1

ABSTRACT

This paper presents a scheme for extending an informal, pen-
based whiteboard system (the Tivoli application on the
Xerox LiveBoard) to provide interaction techniques that
enable groups of users in informal meetings to easily orga-
nize and rearrange material and to manage the space on the
board. The techniques are based on the direct manipulation
of boundaries and the implicit recognition of regions. The
techniques include operations for shrinking and rearranging,
structured borders that tessellate the board, freeform enclo-
sures that can be split, fused, and linked, and collapsible
annotations. Experience with using these techniques, the
results of a user test, some design trade-offs and lessons, and
future directions are discussed.

KEYWORDS: whiteboard metaphor, pen-based systems, freeform
interaction, implicit structure, emergent structure, structural group-
ing, informal systems, recognition-based systems, list structures,
meeting support tools, gestural interfaces, user interface design

1. INTRODUCTION

Our goal is to provide computational support for small, real-
time “working meetings” in which groups interact to gener-
ate and organize ideas (creating and assessing new ideas and
perspectives, discussing them, organizing them, negotiating
about them, and so on). Group interaction in such situations
is informal, freewheeling, and fluid.

Groups often use whiteboards to provide a shared visual sur-
face to record the ideas they are working with and to pre-
serve a shared context. When manipulation demands are
high, people sometimes use a tackboard, magnetic board or
tape and paper in order to be able to move items around.
Sometimes people use projected computer applications, such
as word processors or spreadsheets, to gain the advantages of
both editing and saving the created material. However, these
kinds of applications are not very well suited to meeting situ-
ations, because they force users to create and work with for-
malized representations. The overhead of using such
representations inhibits the very processes they are meant to
support [13]. One of the big challenges for current HCI

design is to create systems to supportinformal interaction.

Pen-based systems that allow scribbling on wall-size dis-
plays or notepads can support whiteboard or shared note-
book metaphors for working with informally scribbled
material [4]. The free, easy, and familiar expression permit-
ted by such systems makes them a promising class of tools to
support informal interaction in meetings [15]. We are explor-
ing pen-based techniques usable by people without any spe-
cial drawing skills, i.e., most people who go to meetings.

We have been working for several years on a program of
research to provide computational meeting tools based on a
whiteboard metaphor. Our idea is to allow freehand/freeform
creation and manipulation of materials on the whiteboard
and to provide facilities to easily and noncommittally orga-
nize and structure the materials as needed by the group.

What makes this program of research possible is theLive-
Board [3], a large, shared, pen-based, rear-projected, elec-
tronic display. This provides a whiteboard-size interactive
display that allows us to experience and experiment with
“group-computer interaction” in a way not possible with
smaller displays, such as workstations, or non- or semi-inter-
active, front-projected displays.

We have developed a software application, called Tivoli [11],
that simulates whiteboard functionality on the LiveBoard.1

Tivoli provides basic pen-based scribbling and erasing inter-
action, plus facilities for editing materials by pen-based ges-
turing and wiping techniques.

We extended Tivoli to allow “implicit structuring” [9] of the
material on the board.2 Material is created on the board in a

1. Tivoli is a research prototype used at PARC [8]. It is written
in C++ and runs under Unix and X Windows. The LiveBoard is a
PC-based commercial product from Liveworks, Inc. Tivoli is run on
the LiveBoard through an X server on the LiveBoard. (A PC-based
commercial product from Liveworks, called MeetingBoard, is an
extended early version of Tivoli.)

2. We use the term “board” in this paper to refer to the visible
work surface provided by Tivoli on the LiveBoard display.

Pen-Based Interaction Techniques For
Organizing Material on an Electronic Whiteboard

Thomas P. Moran, Patrick Chiu,* William van Melle

Xerox Palo Alto Research Center, 3333 Coyote Hill Road. Palo Alto, CA 94304

{moran,vanmelle}@parc.xerox.com, chiu@pal.xerox.com

Appears in the Proceedings of the UIST’97
Symposium on User Interface

Software and Technology.

* Current address: Patrick Chiu, Fuji Xerox, Palo Alto Laboratory,
3400 Hillview Avenue, Palo Alto, CA 94304. At the time of the
work reported in this paper, Patrick Chiu was with Liveworks, Inc.,
A Xerox Company, working at Xerox PARC.

2

freeform manner, which means that anything can go any-
where without constraint. However, the user can indicate to
the system by certain gestures that the material is to be
regarded temporarily as having a certain structure, such as
handwritten text. Tivoli will then apply editing operations in
accordance with the conventions of that structure, such as
opening and closing space where needed when moving
words around (similar capabilities are provided by [1]).

We have now further extended Tivoli by developing a set of
simple and natural techniques for helping users spatially
organize material on the board. This paper presents, in Sec-
tion 2, the motivation, approaches, and design principles for
these new techniques. Section 3 describes the techniques
themselves. Finally, in Sections 4 and 5, we discuss our
experience with using the techniques, a user test we con-
ducted, some lessons, and future directions.

2. PRINCIPLES, GOALS, APPROACHES

2.1. General Design Principles

Tivoli is designed to be used in a group setting. The board is
large enough for a small group to see, so it can function as a
shared work surface (see Figure 1). To serve this setting,
Tivoli’s user interface design is guided by several principles.
Some important ones are:

Social Perceptibility Principle. The interactions at the board
must be understood by the whole group, not just the person
at the board. Several techniques support this goal. The activ-
ity on the board, such as drawing and erasing, islocalized to
be near the pen, where people are focused.Gestures, which
are interpreted pen strokes, are used in preference to remote
buttons. And complex changes to material areanimated so
they can be understood [9].

Openness Principle. An important feature of informal group
interaction is that it is open to unanticipated directions; we
don’t want to inhibit this. Tivoli always allows freeform
scribbling, so that anything can be expressed. A subtle varia-
tion on this is the decision to have a separate mode for ges-
turing. Most pen-based systems interpret some ink strokes as

gestures, but in Tivoli we did not want to foreclose the use of
any kinds of ink strokes by predefining them to be gestures.

Emergence Principle. Ideas do not arise well formed. At first
there are expressions of fragments of thoughts. Once there is
some rough material to work with, interpretations gradually
begin to emerge as they are discussed. Users need to be able
to change their minds and explore different interpretations
and arrangements. The implicit structure technique in [9]
and the organizational techniques in this paper support this
style of informal group interaction.

Agility Principle. Group interaction needs to be fluid and
rapid. Thus the user at the board needs to be nimble to keep
up with the group, so the board can be an integral part of the
working out of ideas and not just a recording medium. A key
feature supporting agility is Tivoli’s Undo feature, which
enables users to “perform”3 at a rapid pace without fear,
knowing they can back up if they have to. The tool should be
fun to use, encouraging it to be “played,” and thus the mate-
rials created to be “played with.”

2.2. Goals for Organizing Material

We have set two basic goals for the design of organizational
tools: (1) to use the board space efficiently and (2) to group
materials on the board.

Using Space Efficiently. The board is never big enough.
Tivoli has multiple, arbitrarily-large, scrollable pages, pro-
viding an unlimited capacity for material. More important is
how much material isvisible at the same time on the board.

Grouping Materials. Scribbles and other kinds of objects on
the board are grouped to make categories visible and to
allow subsets of material to be treated in similar ways. Struc-
tured operations, such as rearranging a list, can then be con-
fined to a grouped subset of material. Thus the groupings
should not only be visible to the users, but also must be rec-
ognizable by the system.

2.3. Other Approaches to Organizing Material

There are several approaches to providing organizational
capabilities, based on different metaphors:

Frozen Groups Approach. Many drawing applications allow
selected objects to be “frozen” into a group, so they can be
operated on as a unit. This is handy, but there are several
problems: the groups are not visually apparent, the elements
in a group cannot be manipulated, and no structural interpre-
tation can assigned to a group.

Overlapping Regions Approach. Material can be grouped by
enclosing items in opaque regions, which can be overlapped
to save space, thus hiding some material. A region can be
made smaller, showing only part of the material, which can
be made visible by scrolling. The most common manifesta-
tion of this approach is in window systems, which are too
rigid to use to organize material. The VIKI application [7]
uses this approach to managing information on a 2D surface.
Its basic objects are “notecards,” which can be put into “col-
lections,” which are manipulated like nested windows. VIKI

3. A concept of Fred Lakin’s (see http://www.pgc.com).

Figure 1. The LiveBoard and Tivoli is meant to
be seen by a group of people.

3

is fairly agile, but it is purely text-based, and its complex
overlapping could be confusing in a meeting setting.

Translucent Overlays Approach. In this approach, proposed
by Kramer [5], sketched material is grouped into separate
translucent layers, like layers of “onionskin” paper used by
architects and designers. The material on successive layers
can be seen gradually fading as the layers get deeper. A layer
can be assigned an interpretation, and operations can be
restricted to the material on the layer. The set of layers have a
complex structure of both nesting and depth ordering, and
many operations are needed to manage layers and their struc-
ture: create, delete, dissolve, clear, change extent, lift,
release, etc. This is an expressively powerful approach, and
has many techniques similar to those in Tivoli. It does seem
to structure material more rigidly than Tivoli, and hence be
less agile. The complex layer structure would be difficult to
manage and understand in a group setting, especially for
people who are not trained in design sketching techniques.

Infinite Zooming Approach. The Pad++ application [2] sug-
gests an intriguing approach (although Pad++ is presented as
visualization system). The model would be of a surface in
which one creates material at any scale and one can zoom in
and out quickly to see an overview and to see details. Many
issues would have to be worked out, such as how to rear-
range material at different scales or a great distance apart at a
given scale (multiple zoom foci might be needed). While
potentially powerful, this approach could be very confusing
in a group setting, because navigating through this zoomable
space seems to be too complex.

2.4. Tivoli’s Single Surface Approach

We have decided to stay with a single surface approach in
Tivoli, because it is conceptually and visually the simplest to
understand. All organizing is done by creating and editing
material on the one-and-only surface of the board. Several
techniques are provided. Material is grouped by dividing the
surface into visually distinct regions by creating and manipu-
lating boundaries. Space is managed by rearranging, shrink-
ing, and collapsing material on the surface. Facile
rearranging allows material to use available space; shrinking
condenses the space material takes, and it can be applied
selectively; and collapsing allows less important material to
be hidden.

2.5. Focus on Boundaries

The “material” on the Tivoli board consists of graphical
objects: ink strokes, gesture strokes, characters, and icons of
various types (see [11] and [9] for more details). Subsets of
these graphical objects can be dynamically selected for vari-
ous purposes, such as for structure operations [9]. There is
no explicit concept of aregion of the board in Tivoli. We did
not want to introduce such a concept, because all the system
really needs is to identify subsets of graphical objects in
order to carry out operations. Boundaries, on the other hand,
are natural in Tivoli, since it is easy to create strokes and ges-
tures and have them be interpreted as boundaries.

The main design principle for grouping in Tivoli is to pro-
vide the user withdirectly manipulable boundaries and to

dynamically computeimplicitly interpreted regions. This
works as follows: When the user selects some graphical
objects on the board, Tivoli looks for boundaries and
chooses the set of boundaries that define the minimal region
around the selection; that is, the region is implicit in the
selection. Any subsequent operations on the selected objects
are confined to objects contained in the implicit region. For
example, consider Figure 2, which shows 9 objects (A to I)
and two kinds of borders. In the left half are straight borders
defining three rectangular areas. In the right half are two
intersecting loops. These halves are geometrically different
but structurally the same. If the user selectsE, then the
implicit region is the middle rectangle or the football-shaped
area of the intersecting loops, and the contained set is
{D,E,F} . If the user, selectsB and E, then the implicit
region is the composite left and middle rectangle or the area
of the left loop, and the contained set is{A,B,C,D,E,F} .

We have introduced various kinds of concrete boundary
objects into Tivoli. Some boundaries are just ink strokes, and
some are created as special objects by gesture strokes. Some
are structured and straight, and some are arbitrarily shaped.
Boundary objects are persistent; but temporary selection
enclosures can also be considered as boundaries, since they
are treated in similar ways.

3. INTERACTION TECHNIQUES

We now describe the interaction techniques for organizing
material on the board. There are several categories of tech-
niques: We begin with basic Tivoli editing techniques (Sec-
tion 3.1). The main techniques have to do with boundaries
for defining regions. There are two kinds: structured rectilin-
ear borders (Section 3.2) and freeform enclosures (Section
3.3), including links between enclosures. Lastly, there are
techniques for collapsible annotations (Section 3.4).

3.1. Basic Selection and Editing

Operations in Tivoli are triggered bygestures, which are
interpreted strokes.4 There are two modes of operations:
freeform operations, which alter material in a literal, uncon-
strained way, andstructured operations, which alter material
according to the rules of the structure they are in. In this
paper, “structure” means list structure.5 For example, con-
sider a vertical list of five items, noted abstractly as
[1#2#3#4#5] , and the action of dragging the 4th item as

4. Tivoli has apen mode which indicates whether strokes are
literal ink or interpreted gestures. We have experimented with dif-
ferent ways to change the pen mode: soft buttons on the board, but-
tons on the pen, and double tapping on the board.

Figure 2. Regions are implicit. Tivoli computes them
dynamically by choosing borders to define a
region around selected material (see text).

4

follows: [1#243###5] . In the freeform case, the 4th item
is left where it is, even if it overlaps the other items. In the
structured case, the list is cleaned up by creating and deleting
spaces:[1#2#4#3#5] .

Creating Selections. Most operations in Tivoli require that a
subset of material be selected first. There are two kinds of
selections—freeform and structured—which determine the
mode of the subsequent operations on the selected material.
A freeform selection is indicated by aloop gesture, resulting
in a selection loop (the familiar “lasso” technique). A struc-
tured selection is indicated bybracket or L gestures. The legs
of the bracket or L are extended as far as they can6 and a
selection rectangle is created.

Altering Selection Boundaries. Selection loops and rectan-
gles are temporary boundaries. They can be reshaped by
alteration gestures. To alter a freeform loop, the gesture
must begin and end on the loop. The loop is altered by
replacing the segment of the loop between the contact points
with the new gesture stroke (see Appendix Note 1 for
details). The alteration gesture can be either outside of the
loop (abump , as in Figure 3) or inside (abite , as in Figure
4). The material selected is recomputed by what is enclosed
in the reshaped loop. To alter a selection rectangle, anL or
bracket gesture is used. The new gesture is matched up with
the corresponding part of the selection rectangle (e.g., an “L”
with the lower-left corner of the rectangle), and the rectangle
is reshaped so the matched part is at the location of the ges-
ture (see Figure 5). The selection is recomputed.

5. In [9] we described several kinds of structures: words, lists,
tables, and outlines. However, we found that users in meetings
almost always used only the list structures. Thus, in order to sim-
plify the user interface, we have disabled all but the list structures.

6. They extend to a border, as we shall see.

Generic Operations. The basic editing operations are move
(a right-wedge gesture or adrag), copy (aleft-wedge gesture,
like a “C”), and delete (apigtail gesture). These are generic
in that they are either freeform or structured operations,
depending on the type of selection. Further, if there is no
selection, theright-wedge andpigtail are interpreted as oper-
ations to manipulate the spacing of list items. Aright-wedge
causes space to open up in a list at the point of the wedge, so
that a new item can be written in. Apigtail causes the space
between items at the pigtail to be compressed. The open-up-
space operation has proved to be especially useful.

Scaling Operations. The simplest technique for managing
space is to shrink material to allow more to fit on the board.
Thus we provide operations to shrink (by aspiral-inward
gesture) and expand (by aspiral-outward gesture) selected
material. If the selection is structured, the surrounding mate-
rial is moved to accommodate the new size of the selected
material. For simplicity, the shrink/expand operation is by a
fixed factor of √2, i.e., two successive shrinks cause the
width and height of material to be half the original size.

3.2. Structured Borders

In the earlier version of Tivoli [9], we interpreted long ink
strokes as borders. We found that users almost always drew
straight vertical and horizontal borders. This made sense,
because the structure operations were rectilinear.7 Thus, we
decided to provide straight borders that tessellate a Tivoli
page into rectangular regions. The regularity of the tessella-
tion structure allow us to provide more powerful features.

Structured Border Model. A structured border is either verti-
cal or horizontal. A border may cross other borders, and each
end of the border may dead-end into another border or
extend indefinitely. This border model creates arectilinear
tessellation: every region defined by these borders is rectan-
gular (possibly unbounded), and the page is completely tes-
sellated by these regions. Adding and deleting borders must
preserve the tessellation property. Border junctions are either
crossings (+) or T-junctions (see Figure 6). In the case of a T-
junction, the terminating border is said to be adependent of
the border it dead-ends into. If a border is deleted, then all of
its dependents must also be deleted, in order to preserve the
rectilinear tessellation.

7. For example, consider a tapering region containing a list.
Some items in the list may not be able to be moved because they are
too wide to fit into the narrower parts of the region.

Los Angeles

San Francisco

Los Angeles

San Francisco ➪

Figure 3. A freeform selection loop (dark grey dashed
line) is altered by a bump gesture (light
grey) to include new material.

Los Angeles

San Francisco

Los Angeles

San Francisco

➪

Figure 4. A freeform selection loop is altered by a bite
gesture to exclude some material.

Los Angeles

San Francisco

Los Angeles

San Francisco

➪

Figure 5. A structured selection rectangle is altered by
an L gesture to include new material.

5

Creating Borders. A border is created from ahorizontal-line
or vertical-line gesture by extending the gesture until it hits
another border or extends indefinitely. A border is a graphic
object that looks like a straight ink stroke, but it has special
behaviors. For one thing, the erase pen mode does not affect
it, to protect users from inadvertently deleting it.

Selecting Borders. A tap on a border selects the shortestseg-
ment of the border, determined by the border crossings near-
est the point of thetap . The full extent of a border is selected

by adouble-tap . When a border or a segment is selected, its
dependent borders arehighlighted (Figure 6 shows a selected
border with three dependents). Operations on the selected
border can affect its dependents.

Deleting Borders. A border or border segment can be deleted
by apigtail , which causes all its dependents to be deleted as
well (in Figure 6, this would cause the leftmost five regions
to become one region).

Moving Borders. A border or border segment may be moved
by a drag . However, the movement is constrained; it is
stopped when it bumps into any material (in Figure 6, the
selected border cannot move beyond the “g” in “Hong
Kong” or the “N” in “New York”). This protects the user
from inadvertently “reassigning” material to another region
(which instead is done by moving the material itself). When
a border is moved, its dependents are adjusted to preserve the
T-junctions (in Figure 6, the length of three horizontal bor-
ders would be adjusted).

Creating Spatial Gaps. A horizontal-line 8 gesture does not
have to be perfectly horizontal for it to be recognized by the
system (after all, the user is drawing freehand). Sometimes
the user draws a recognizedhorizontal-line where there is no
horizontal spatial gap for a border without intersecting some
material. Originally, we would just abort the border creation
and require the user to move the material to create the gap,
which is tedious. So we changed the operation onhorizontal-

8. This discussion also applies to thevertical-line gesture.

Los Angeles

San Francisco

Vancouver
Moscow

Honolulu

Sydney

Brasilia

Buenos Aires

Figure 6. When a structured border is selected (vertical
dashed line), its dependent borders are high-
lighted (light grey).

Figure 7. A horizontal-line gesture creates a horizontal spatial gap, allowing a border to be created or structured selec-
tions to be made.

➪

Los Angeles

San Francisco

Vancouver

Los Angeles

San Francisco

Vancouver

Figure 8. A wiggly-line gesture from top to bottom causes material to move to the right to create a vertical spatial gap
(in effect, two columns).

➪

6

line to move material to create a horizontal gap if there is no
gap (see Figure 7). Then a secondhorizontal-line is required
to create the border. The reason for this is that the gap-creat-
ing operation proved to be useful without the border; it is
used to create gaps between list items, so that messy lists can
be manipulated with the structure operations. Finally, we

became more liberal with our recognition and allowed awig-
gly-line that goes from border to border, which allows more
“dramatic” movement of material to help in organizing it.
For example, Figure 8 shows a list being rearranged into two
separate columns.

Automatic Expansion. A structured move of material into a
rectangular region will cause the region to expand, if needed,
to accommodate the material. Expansion is accomplished by
pushing borders and regions rightward and downward (as
shown in Figure 9). (See Appendix Note 2 for details.) This
expansion regime is easily understandable and has proved to
be very useful to give the user freedom to move material as
needed without worrying about what fits where. On the other
hand, if the user wants to keep the size of a certain region
fixed, the borders of this region can be changed toanchored
borders, which are not automatically moved.

Flow Borders. A Flow border is another type of border. It is a
vertical border (shown as a dashed line) that allows material
to automatically “flow through” it, thus providing for multi-
column lists. When flow borders divide columnar regions,
the material in those regions is treated as a single list. For
example, structurally deleting items in the leftmost column

Los Angeles

San Francisco

Vancouver
Moscow

Honolulu

Sydney

Brasilia

Buenos Aires Los Angeles

San Francisco

Vancouver
Moscow

Honolulu

Sydney

Brasilia

Buenos Aires

Figure 9. A structured move of material into a region causes it to be expanded and adjacent regions to be pushed right-
ward and downward. The move depicted here was triggered by a right-wedge gesture in the center region,
but the user could also have just dragged the selection into place.

➪

Johannesburg

Brasilia

Buenos Aires

Mexico City

Los Angeles

San Francisco

Figure 10. A large-sideways-S gesture causes a long list
to be reformatted to fit onto the board. The
resulting multicolumn list is shown in Figure 11.

Johannesburg

Brasilia

Buenos Aires

Honolulu

Sydney

Moscow

Vancouver

Los Angeles

San Francisco

Mexico City

Johannesburg

Brasilia

Buenos Aires

Honolulu

Sydney

Moscow

Vancouver

Los Angeles

San Francisco

➪

Figure 11. Vertical flow borders allow items in a multicolumn list to be regarded as a single list. Deleting items (pigtail ges-
ture) in column 1 causes items to flow leftward.

7

causes items from other columns to flow leftward to fill in
the space (as shown in Figure 11).

Shrink-to-Fit Operation. One of the most useful operations
for space management uses flow borders. Consider a long
list created freehand resulting from a brainstorm, during
which the page was scrolled upward as items were created.
People usually write on the board at a size convenient for
writing, which is much larger than is needed for viewing.
The shrink-to-fit operation reformats the long list into a mul-
ticolumn list that fits onto the board, so the whole list can be
seen and manipulated. (See the Appendix Note 3 for the
algorithm.) This operation is triggered by alarge-sideways-S
gesture. For example, Figure 10 shows the visible part of a
long list. The shrink-to-fit operation reformats it to look like
Figure 11.

3.3. Freeform Enclosures

Structured borders are powerful but somewhat rigid. When
quickly trying to group a few items, users may not want to be
confined to rectangles, and they may not want to tessellate
the whole page surface. Freeform enclosures are more
appropriate for this purpose.

Enclosure Model. A freeform enclosure is just an ink stroke
that forms a loop of any shape. It behaves as any other stroke
(e.g., it is erasable), except for certain operations that check
for enclosures. An enclosure defines its interior to be a
region, and the material enclosed is thus grouped. For exam-
ple, if an enclosure contains a list, structural operations on
the list will be confined to the enclosure. However, note that
an item or a list can expand outside the confines of the enclo-
sure. Unlike structured borders, the shape of enclosures is
not automatically altered, because they are freeform and do
not conform to any rules. From the outside, an enclosure is
just another graphical object (e.g., a column of enclosures
can be manipulated as a list of items). Enclosures can be
nested. Enclosures can also intersect, making different
regions possible (as in Figure 2).

Creating, Selecting, and Moving Enclosures. An enclosure is
created just by drawing it. An enclosure and its contents can
be selected by aloop , but it is quicker to justtap on the
enclosure stroke, which causes a selection loop to be auto-
matically created. A selected enclosure (plus its contents) is
moved by adrag .

Altering, Splitting, and Fusing Enclosures. An enclosure is a
boundary, and can thus be altered with the same gestures that
alter selection loops,bite andbump , as in Figures 3 and 4.
Further, an enclosure can besplit into two enclosures by a
back-and-forth gesture (see Figure 12). Two or more enclo-
sures can befused into a single enclosure by aloop gesture
that cuts through both enclosures (see Figure 13).

Links Between Enclosures. Sometimes it is useful to draw a
link between enclosures to indicate some kind of relationship
between them. Alink is simply an ink stroke whose end
points touch two enclosures.9 This extends the enclosure
model to include anode-link structure. This structure is sup-
ported as follows. Atap on an enclosure (node) not only
selects the enclosure, but also highlights any links from the
enclosure (as shown in Figure 14). When a selected enclo-
sure is moved, the links are reshaped to preserve the link
connectivity. This reshaping also preserves the original
shape characteristics of the links (see Figure 14; also see
Appendix Note 4 for the algorithm). If one does not want a
particular link to be changed when an enclosure is moved, it
can be “unhighlighted” by abite gesture on the selection
loop where the link crosses it. A link’s connection points can
be manually changed by selecting one of its end points (by a
tap) and dragging the end point to another place; the link is
automatically reshaped.

3.4. Collapsible Annotations

The final organizational technique is to deal with annotations
that users often make on the board. The problem with anno-
tations is that they take up space and they often “mess up” a
structure, making structured operations unworkable. One
way to deal with this problem is to provide a technique for
collapsing annotations so they don’t take up space but still
are accessible.

Collapsible Annotation Model. Applying acollapse operation
to selected material results in the material being replaced by
a smallcontainer icon (a graphic object subject to the nor-
mal Tivoli editing operations). A container icon is a small
box with a unique integer in it (see Figure 15), and we usu-
ally talk about it metaphorically as a “footnote.”10 It is to be

9. Actually, only one end point need touch an enclosure; the
other may dangle. This allows incomplete diagrams.

10. There are also operations to display all the contained materi-
als at the bottom of each page as footnotes or on a separate page as
endnotes.

Los Angeles

San Francisco

Los Angeles

San Francisco

Figure 12. A back-and-forth gesture splits a freeform
enclosure into two enclosures.

➪

Los Angeles

San Francisco

Los Angeles

San Francisco

Figure 13. A loop gesture fuses multiple enclosure into
a single enclosure.

➪

8

thought of as “containing” the collapsed material. Applying
a display operation to a container icon causes the contained
material to be displayed on an opaqueoverlay (as in Figure
15c).11 An overlay can be dragged around or dismissed. The
overlay itself cannot be edited; but the material on the over-
lay can bepasted back onto the board, where it is fully edit-
able (and re-collapsible if desired).

Gestures. The collapse operation is triggered by aballoon
gesture, as shown in Figure 15a (the original version of the
container icon looked like a tiny cartoon balloon). Atap on a
container icon selects it.Double-tap on a container icon dis-

11. This is the only object in Tivoli that is allowed to opaquely
overlap other objects on the board.

plays its contents on an overlay.Drag moves an overlay, and
tap dismisses it. Thepaste button on the overlay causes the
material to “drop” from the overlay onto the board—visu-
ally, the overlay frame seems to just disappear—and the con-
tainer icon is deleted.12

Structured Annotations. Material can also be collapsed and
put back in a list structure. When the collapse operation is
applied to a structured selection, the list items selected disap-
pear, the space is closed up, and the container icon is placed
at the rightmost point of the list item above the selection.
The insert button on an overlay puts the material back onto

12. The user is warned if there is already material underneath the
overlay. Semi-transparency would be useful here.

Los Angeles

San Francisco
Los Angeles

San Francisco

➪

Figure 14. When an enclosure node is moved, links are reshaped to maintain the connections.

1 1

2

1

2 Insert Paste

1

➪ ➪

➪

(a) (b)

(c) (d)

Figure 15. A balloon gesture (a) collapses the selection into a “footnote” icon (b). A tap on the footnote icon displays its
contents in an overlay (c). Insert inserts the contents into the list (d).

9

the board as an inserted list item, i.e., space is opened up for
the item. Using these operations on indented lists provides a
primitive outlining facility. Collapsing and putting back are
independent operations, and the freeform and structured ver-
sions of these can be intermixed, as is seen in Figure 15d.

4. EXPERIENCE, TESTS, AND TRADE-OFFS

The design, development, testing, and refinement of these
techniques was an iterative process over a period of two
years. Observations of meetings and experiences with the
basic Tivoli facilities provided a continual stream of goals
for designing meeting tools. We tested early versions of
these techniques on ourselves. Robust versions were
included in regular Tivoli releases as they became ready, so
they could be tried out in various meetings. The structured
border facilities and a somewhat specialized version of the
collapsible annotation techniques are in regular use in our
long-term meeting-support case study reported in [8].

User Tests. We wanted to test the learnability and usability
of the suite of interaction techniques by novice users. We
developed an explain/demo/practice training sequence and a
set of test tasks exercising all the techniques. We ran three
pilot users to debug the test procedures and the user interface
(e.g., these tests led us to adjust the precedence among the
gesture recognition rules). We then ran eight test users: seven
non-technical administrative people at PARC and one stu-
dent intern. None had any LiveBoard experience (except one
who did a similar test for us three years earlier). There were
eight individual 90-minute test sessions, consisting of train-
ing, tasks, and debriefing. The training was at the user’s own
pace; the user had to understand and demonstrate the use of
the techniques. The test tasks simulated the user being a
meeting scribe who was asked to rapidly make a long series
of changes to material on the board, which required the use
of all the techniques described in this paper.

Main Test Results. The basic result is that the techniques are
understandable, learnable, and usable by non-technical, nov-
ice users. All users were able to learn all the techniques to
their own level of comfort in an average of 43 minutes.13

They found the techniques understandable and usable. They
all were able to perform all the scribe-editing tasks. Most
commented that the experience of using the LiveBoard was
enjoyable. Different users found different features more
compelling for their own tasks—list editing, node-link
manipulation, annotations—but the overall favorite feature
was shrink-to-fit.

Design Trade-Offs. Users encountered a myriad of small dif-
ficulties that they easily worked through, but no obvious
changes were suggested. Rather, the tests highlighted several
design trade-offs we had made. The ink-vs-gesture pen mode
and the freeform-vs-structured operation mode, and the
generic operations (e.g.,line to create gaps and borders) all
served their purposes, but at the cost of users having to be
vigilant. Undo allowed easy recovery from lapses of vigi-
lance. Our use of gestures means that users have to recall

13. Breakdown of the learning time: basic Tivoli techniques, 19
min.; borders, 9 min.; enclosures, 10 min.; and annotations, 5 min.

them (vs. recognizing items in a menu). We gave the test
users a crib sheet for reference, which was helpful. Prompt-
ing techniques, such as marking menus [6], can only par-
tially help, because many of our gestures must be drawn in a
spatial context to indicate their meaning. In these decisions
we usually traded some simplicity for openness and agility.
The basic trade off is that users need to invest some learning
time to attain the level of performance we aim to provide;
this not a walk-up-and-use interface.

5. CONCLUSION AND FUTURE WORK

There are several features we understand how to design, but
have not yet implemented. For example, dragging a struc-
tured border should allow the user to flexibly shrink a region.
At present a border stops moving when it bumps into mate-
rial. What it should do is to continue to be dragged, but to
indicate how the material in the region must be reshaped to
accommodate the new border position: first empty spaces
will be squeezed out, then the material will be shrunk, then
multiple columns will be created. Another example is that
freeform enclosures should adjust their shape when inserted
material does not fit.

One intriguing idea that needs investigation is the notion of
implicit spatial boundaries. The techniques presented here
involved explicit boundaries (structured borders and free-
form enclosures). While these do work well, there are situa-
tions when it is “obvious” to everyone that material is
visually grouped, and it seems tedious to have to explicitly
create borders. Open spaces on the board can be regarded as
implicit borders (consider, e.g., Figures 6 or 8 without the
borders). There are visual processing techniques for tracing
out the implicit borders in empty spaces14 and for identify-
ing spatial groupings by proximity (e.g. [14]). Such tech-
niques need to be explored to see if they match user
perceptions well enough to be more helpful than harmful.

In summary, we have presented a suite of techniques for
organizing materials on a pen-based electronic whiteboard.
These techniques provide a wide range of functionality for
grouping and rearranging material on the board and for using
the limited space of the board most effectively. The tech-
niques have been implemented and integrated into the Tivoli
application, user tested, and made reliably usable. These
techniques are not for walk-up users. They must be learned.
But once learned, they allow the user to be facile enough to
support a fast-paced meeting situation.

ACKNOWLEDGMENTS

We would like to thank our colleagues in the Collaborative Systems
Area (CSA) of PARC for many discussions and suggestions, espe-
cially Chuck Hebel, Beverly Harrison, and Ron Mann. We thank
Jim Mahoney and Eric Saund for discussing and exploring many
issues of graphics and recognition with us. Finally, we thank our
enthusiastic pilot and test users and members of CSA for putting up
with an ever-changing whiteboard in our meetings.

14. Jim Mahoney, personal communication.

10

REFERENCES
[1] aha! InkWriter Handbook (1993). Mountain View, CA:

aha! software corporation.
[2] Bederson, B. B., & Hollan, J. D. (1994). Pad++: A

zooming graphical interface for exploring alternate
interface physics.Proceedings of UIST’94. New York:
ACM.

[3] Elrod, S., Bruce, R., et al. (1992). LiveBoard: A large
interactive display supporting group meetings, presen-
tations, and remote collaboration,Proceedings of
CHI’92. New York: ACM.

[4] Gross, M. D., & Do, E. Y. (1996). Ambiguous inten-
tions: a paper-like interface for creative design.Pro-
ceedings of UIST’96. New York: ACM.

[5] Kramer, A. (1994). Translucent patches—dissolving
windows.Proceedings of UIST’94. New York: ACM.

[6] Kurtenbach, G. (1993). The evaluation of an interaction
technique based on self-revelation, guidance, and
rehearsal. Ph.D. Thesis, University of Toronto.

[7] Marshall, C. C., Shipman, F. M., & Coombs, J. H.
(1994). VIKI: Spatial hypertext supporting emergent
structure.Proceedings of ECHT’94.

[8] Moran, T. P., Chiu, P., Harrison, S., Kurtenbach, G.,
Minneman, S., & van Melle, W. (1996). Evolutionary
engagement in an ongoing collaborative work process:
a case study.Proceedings of CSCW’96. New York:
ACM.

[9] Moran, T. P., Chiu, P., van Melle, W., Kurtenbach, G.
(1995). Implicit structures for pen-based systems within
a freeform interaction paradigm.Proceedings of
CHI’95. New York: ACM.

[10] Saund, E., & Moran, T. P. (1994). A perceptually-sup-
ported sketch editor.Proceedings of UIST’94. New
York: ACM.

[11] Pedersen, E., McCall, K., Moran, T. P., & Halasz, F.
(1993). Tivoli: An electronic whiteboard for informal
workgroup meetings.Proceedings of INTERCHI’93.
New York: ACM.

[12] Saund, E., & Moran, T. P. (1994). A perceptually-sup-
ported sketch editor.Proceedings of UIST’94. New
York: ACM.

[13] Shipman, F. M., & Marshall, C. C. (1993). Formality
considered harmful: experiences, emerging themes, and
directions. Technical Report, Department of Computer
Science, University of Colorado.

[14] Shipman, F. M., Marshall, C. C., & Moran, T. P. (1995).
Finding and using implicit structure in human-orga-
nized spatial information layouts.Proceedings of
CHI’95. New York: ACM.

[15] Wolf, C., Rhyne, J., & Briggs, L. (1992). Communica-
tion and information retrieval with a pen-based meeting
support tool.Proceedings of CSCW’92. New York:
ACM.

APPENDIX: MISC. IMPLEMENTATION NOTES

1. Altering Enclosures. When an enclosure is altered by a
gesture, the gesture’s end points break up the enclosure into
two pieces. For abump (Figure 3) it is clear what to do—the
enclosure always expands. However, for abite (Figure 4), it
is ambiguous which of the pieces should be retained, espe-
cially when thebite divides the enclosure into somewhat
equal pieces; users’ perceptions vary on this issue. Our
implementation keeps the piece with the longer arc length.
We are exploring various other criteria: (a) keep the piece
that merges best with thebite in terms of minimizing the
angle change at the two contact points, (b) keep the piece so
that the resulting enclosure has the largest area, (c) keep the
piece so that the resulting enclosure contains the most mate-
rial.

2. Automatically Expanding Structured Regions. The princi-
ple is to preserve the highest level border structure. Con-
nected colinear border segments should remain connected.
In the expanded region, the right and bottom borders along
with their connected colinear borders determine the neigh-
boring regions to be pushed out; these in turn determine the
next neighboring regions; and so on. For example, in Figure
9, the vertical border to the right of the destination must be
moved, and since it is colinear with the border above it (to
the right of Vancouver), both are moved in concert. The bor-
der below the destination must also be moved, but it is free to
move independently.

3. Fitting a List on the Board. The material on the Tivoli page
is first interpreted as a list by grouping the objects into list
items. The number of columns,N, for formatting the visible
board is computed by finding theN that maximizes the
shrink factor (i.e., minimizes the degree to which the mate-
rial is scaled down). For a specificN, the shrink factor is
determined by the height of the list and the width of the wid-
est list item. Finally, flow borders are created, the material is
scaled by the shrink factor, and the list items laid out into the
columns. (See Figures 10 and 11.)

4. Reshaping Links. When an enclosure is moved, the end
point of its link is also moved to preserve its attachment to
the enclosure; and all the segments comprising the link must
also be moved to preserve the shape of the link. We found
that simply scaling the link segments has the drawback that it
sometimes causes drastic distortions. Instead, we employ an
additive (rather than multiplicative) method where the dis-
placement of the enclosure’s move is additively distributed
among the link segments. (See Figure 14.) If the resulting
link intersects the enclosure, other steps are taken to remove
the unsightly intersections. First the attached endpoint is
flipped to the other side of the enclosure. If it still intersects,
then the link is reshaped as above. If it still intersects, the
part of the link crossing the enclosure is truncated, so that no
intersection remains.

